Werkstoffe der Mikrosystemtechnik

Vorlesung 6. Semester - Mechatronik

Sven Richter (mail at svenrichter.de)

8.04.2005 - 6.05.2005

Inhaltsverzeichnis

1	Physikalische Grundlagen									
	1.1	Bindungen								
		1.1.1	Atombindung - kovalente Bindung	3						
		1.1.2	Ionenbindung	4						
		1.1.3	Metallbindung	4						
		1.1.4	Van-der-Waals-Bindung	4						
	1.2	xalische Hochreinigung	6							
		1.2.1	Allgemein	6						
		1.2.2	Segregation	6						
	1.3	Überg	ang in den festen Zustand	9						
		1.3.1	Allgemein	9						
		1.3.2	Keimbildung	9						
		1.3.3	Keimwachstum	10						
	1.4	Verfahren zur Herstellung von Einkristallen								
		1.4.1	BRIDGEMAN-Verfahren	12						
		1.4.2	CZOCHRALSKI-Verfahren	12						
		1.4.3	ZONENSCHMELZEN	12						
	1.5	Glaszı	ıstand	13						
2	Geg	genübe	rstellung Leiter - Halbleiter - Isolator - optoelek-							
	tror	tronischer Werkstoff 1								
	2.1	Allgen	nein	15						
	2.2	Bände	ermodell	15						
	2.3	Leiterwerkstoffe								
	2.4 Halbleiter-Werkstoffe									
	2.5	Isolati	onswerkstoffe	21						
	2.0	1001001		• • •						

Physikalische Grundlagen 1

1.1Bindungen

Abbildung 1: Abstand Kraft Abhängigkeit

Ab einem bestimmten Punkt \rightarrow wenn 2 Teilchen in direkte Nähe gebracht werden ist der Abstand so das die abstoßenden und anziehenden Kräfte im Gleichgewicht sind.

- Ionenbindungen
 Metallbindungen
- •
- Van-der-Waals-Bindungen Wasserstoff-Brücken-Bindung •

1.1.1Atombindung - kovalente Bindung

Grundlage ist die Überlappung von Elektronenorbitalen \rightarrow die Elektronen gehören zu beiden Atomen.

Beispiel: $0_2 \rightarrow je 6$ Valenzelektronen, $2e^-$ gemeinsam genutzt (Edelgass ähnliche Konfiguration)

Eigenschaften:

mechanisch hart und spröde (die Winkel müssen erhalten bleiben)

elektrisch nicht leitend (Isolatoren bis Halbleiter)

optisch wellenlängenabhängige Absorption bzw. Transmission

C-C-Bindung: 347 $\frac{kJ}{mol}$ Si-Si-Bindung: 176 $\frac{kJ}{mol}$

Abbildung 2: Potentialtöpfe

1.1.2 Ionenbindung

Resultiert nicht aus gemeinsamer Nutzung \rightarrow ein Atom wird ein positiv geladenes ION und eines ein negativ geladenes ION. Dadurch entsteht eine elektrostatische Anziehung.

Austausch von $e^- \rightarrow A^+ + B^-$

Eigenschaften:

mechanisch hart und spröde

elektrisch Isolatoren (Ionenleitung ist unter Umständen möglich)

optisch eher transparent

N-Cl: 410 $\frac{kJ}{mol}$

1.1.3 Metallbindung

Valen
z e^- werden Festkörper zur gemeinsamen "Nutzung" abgegeben
 \rightarrow F: elektrost. $e^-\text{-}{\rm Gas}$ und pos. Atomrümpfe

Eigenschaften:

mechanisch gut verformbar

elektrisch sehr gut leitend (Abbildung 3)

optisch Licht wird absorbiert bzw. reflektiert

Li-Li: 111 $\frac{kJ}{mol}$

1.1.4 Van-der-Waals-Bindung

Durch bilden von Dipolen bilden sich Wechselwirkungen welche Bindungen aufbauen können.

Dipolwechselwirkungen = Van-der-Waals-Bindungen $\leq 25 \frac{kJ}{mol}$

Abbildung 3: Bindungsenergie in Abhängigkeit abgegebener e^-

Beispiel - Wasserstoff Das Elektron des Wasserstoff-Atoms wir von einem Bindungspartner aufgenommen. Ein Proton bildet den Gegenpol.

Abbildung 4: Oberfläche

Oberfläche (Abbildung 4) ist

- sehr reaktiv (Bsp. Oxidbildung bei Metallarten)
- ↑ Oberflächendiffusion (da Pottentialmulden flacher)
- durch ungesättigte Bindungen entstehen Oberflächenspannungen

1.2Physikalische Hochreinigung

1.2.1Allgemein

Warum hochrein? \rightarrow Verboten Zone für e^-

 \rightarrow mind. Potential für Valenz - Leitungsband Sprung

 \rightarrow Fremdstoffe verändern die Bandstruktur \rightarrow vllt. ungewünscht

Generatios-Rekombinationsrate: Si bei Raumtemp 1.5 $10^{10} cm^{-3} \left(\frac{Ladungsträger}{cm^3}\right)$

 $(\rightarrow$ Grund für Nichteinsetzbarkeit von Si in Motorgegend \rightarrow ab $150^{\circ}C$ Rekombinations-Rate $\uparrow\uparrow\uparrow$)

 \rightarrow Si 5 * 10²² Atome * cm^{-3}

chem. Reinheit ρ_0 -

Abbildung 5: Leitfähigkeit

 \rightarrow SN - Reinheit \rightarrow 99.998 ... 1 (\rightarrow techn. Mat. meist nur 2N)

 \rightarrow Reinheitsanforderung für Bond-Drähte \rightarrow Unreinheiten können Halbleiter-Eigenschaften zerstören (HL-Killer: Schwermetalle, Bsp.: Blei und Gold)

 \rightarrow Vorprozess (Bsp.: phys. Reinheit) \rightarrow chem. Reinigung \rightarrow Destillation \rightarrow Verdampfen \rightarrow Kühltürme $f(Temp/H\ddot{o}he) \rightarrow$ Fraktionieren

Segregation 1.2.2

Voraussetzung: $\sim 99,9\% ige$ Reinheit

Betrachtung: ganz linke Seite im Zustandsdiagramm (vereinfacht)

$$k = \frac{x^S}{x^L} < 1$$

- Verteilungskoeffizient k

 $rac{x^S}{z^L} <$ - müssen zu einer Temperatur gehören

- Reinigung der festen Bestandteile

Abbildung 6: Zustandsdiagramm m% Silicon

Abbildung 7: T-A-Diagramm

- Nachbaratome eines Stoffes lassen sich meist schlecht herausdestillieren
- Nachbaratome werden beim Segregieren auch schlecht gefiltert (aber die Halbleiter-Killer bei Si werden gefiltert → positiv)

Normalerstarrung (Abbildung 8)

- keine Diffusion durch Phasengrenze
- ständig Durchmischung/Diffusion der flüssigen Phase
- Konvektion in L

Konvektion Bewegung von vielen Teilchen

Diffusion Bewegung eines Teilchens unabhängig vom Rest

Abbildung 8: Normalerstarrung

Abbildung 9: Zonenschmelzen

Zonenschmelzen (Abbildung 9) \rightarrow Verunreinigen werden weggeschnitten und nochmal eingeschmolzen $X^S = X^O(1 - (1 - k)e^{-\frac{kx}{e}})$

- n-mal Zonenschmelzen durchführen
- Verunreinigungen sammeln sich auf einer Seite

techn. Prozess findet unter Schutzgass oder Vakuum statt.

 $\label{eq:selectives} \begin{array}{ll} \textbf{selektives Abdampfen} & \rightarrow \mbox{Verdampfungstemp.} \mbox{ ist stark vom Umgebungsdruck abhängig.} \end{array}$

 $T_{Verdampfung} \leq T_{Schmelz} (A) \rightarrow \text{dampfen aus Schmelze aus } T_{Verdampfung}(P)$

1.3 Übergang in den festen Zustand

1.3.1 Allgemein

Abbildung 10: Agregatzustände

Abbildung 11: Enthalpie

Entalpie - h Beschreibungsform der Energie bei konst. Druck GIBBSsche Freie Enthalpie G

$$G = H - TS \tag{1}$$

Entropie - S Grad der inneren Unordnung

$$dG = -SdT + Vdp \tag{2}$$

1.3.2 Keimbildung

- bei der Keimbildung wird Energie frei
- Keimbildung bringt eine Oberflächenbildung
 - Grenzbildung \leftarrow braucht Energie
 - Wechselspiel zwischen Energie frei werden und -aufnehmen

$$\Delta G = \overbrace{\Delta G_{Vol}}^{Volumenbild} + \overbrace{\Delta G_{GF}}^{Grenzflächenbild} \frac{d(\Delta G)}{dr} \neq 0$$
(3)

$$\Delta G = -\underbrace{\frac{4}{3}\pi r^3}_{*^1} \underbrace{\Delta g_v}_{*^2} + \underbrace{4\pi r^2}_{*^3} \underbrace{Y_{Hl}}_{*^4} \tag{4}$$

- *¹ Kugelvolumen
- $*^2$ spez. Volumenbildenthalpie
- *³ Kugeloberfläche
- $*^4$ Oberlflächenspannung

Gleichung 3 + Gleichung 4

kritischer Keimradius:
$$r_k = \frac{2Y_{Hl.}}{\Delta q_V}$$

$$\Delta g_V = \overbrace{\frac{\Delta H_{Schmelz}}{T_{Schmelz}}}^{*^1} \underbrace{\Delta T}_{*^2}$$

*¹ spez. Entropie der Schmelze

*² Unterkühlung

- \rightarrow Abkühlungsgeschwindigkeit bedingt Gefügeaufbau
- feinkristallines Gefüge (schnell Abkühlen)
- große grobkristalline Gefügelangzeitige Abkühlung

r_k in nm	Al	Cu	Su (Zinn)					
Element	1,11	1,06	$1,\!36$					

 \rightarrow Durchmesser in der Größenordnung von ca. 10 Atomen

1.3.3 Keimwachstum

Abbildung 12: Keimwachstum

Abbildung 13: Keimbildung

Abbildung 12: größter Energie-Gewinn $1 \rightarrow 2 \rightarrow 3$ \rightarrow stufenförmiges Wachstum (\rightarrow je nach Energetisch günstigen Standpunktwerden werden Plätze $1 \rightarrow 3$ besetzt) Die heterogene Keimbildung ist leichter zu realisieren als die homogene Keimbildung. Mit Hilfe des Diagramms (Abbildung 13) kann je nach Einsatzzweck die Schichtmorphologie eingestellt werden.

- $\bullet\,$ schnelles Wachstum \rightarrow grobes Gefüge
- $\bullet\,$ langsames Wachstum $\rightarrow\,$ sehr feines Gefüge

1.4 Verfahren zur Herstellung von Einkristallen

1.4.1 BRIDGEMAN-Verfahren

entspricht der Normalerstarrung + Einkristall-Start durch Anschneiden eines Keimes oder "dünnes Ende"

Nachteile: Schmelze im Tiegel \rightarrow Verunreinigungen + Strukturfehler

Vorteile:

- Kostengünstig
- schnell
- kein großer Aufwand

1.4.2 CZOCHRALSKI-Verfahren

- noch keine tiegelfreies Verfahren
- Schmelze im Tiegel \rightarrow Verun
reinigungen aber Kristall wächst frei \rightarrow Versetzungsdichte
 \downarrow

Impfkristall Einkristall von dem die Orientierung bekannt ist (Orientierung zum Beispiel über Röntgenmethoden bestimmen)

Vorgehen:

- im Tiegel Schmelze herstellen
- Impfkristall in Schmelze (Nanometer)
- am Impfkristall nach oben ziehen (dabei drehen)
- die Geschwindigkeit des Ziehens bestimmt den Durchmesser

1.4.3 ZONENSCHMELZEN

- der Kristall wächst v"ollig frei "tiegelfrei" (siehe Hochreinigung in Kapitel 1.2)
- der Kristall wird in einem begrenzten Bereich geschmolzen (Oberflächenspannung hält das zusammen)
- nahezu perfekter Kristall

VERNEUILE - für hochschmelzende Materialien: Pulver auf Einkristalle + Knallgas-Flamme **Flüssigphasenepitaxie** Abscheidung aus Lösung. Das aufwachsende Kristallgitter muss sich an der vorhandenen Unterlage orientieren, Funktioniert nur für dünne Schichten. Für unterschiedliche Materialien (Bsp: Piezo-Werkstoffe,)

Abbildung 14: Schichtstruktur

Nanokristalline bis amorphe Schichtstruktur

- gut strukturierbar (Bild 14) (bei feineren Körnern leichter zu teilen)
- besondere Diffusions-Eigenschaften (Amorphe Schichten sehr gut als Diffusionsbarriere geeignet)
- besondere mechanische Eigenschaften
- schlechtere elektr. Leitfähigkeit (Abwägen)

1.5 Glaszustand

Abbildung 15: Temp.-Enthalpie

- H Enthalpie
- T_S Schmelztemperatur
- T_G Glastemperatur

Abbildung 16: Temp.-Eigenschaft

Problem: der feste Zustand ist energetisch günstiger für den Werkstoff. (Meisten Werkstoffe fallen sehr leicht aus dem Glaszustand)

2 Gegenüberstellung Leiter - Halbleiter - Isolator - optoelektronischer Werkstoff

2.1 Allgemein

Willkürliche Einteilung vom elektrotechnischem Standpunkt aus.

2.2 Bändermodell

Wenn Platz besetzt (also Energieniveau) muss das Elektron woanders hin (PAULI) da 2 Elektronen nicht das gleiche Energieniveau haben dürfen \rightarrow daher entstehen mehrere Bänder.

$$e^{-} \rightarrow eineWelle\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE} \ \vec{k}} = \frac{\vec{p}}{\vec{h}}$$
$$|k| = \frac{2\pi}{\lambda}$$
$$W_{kin} = \frac{m}{2}v^{2}, \ p = m * v = \vec{h} * k$$
$$W_{kin} = \frac{p^{2}}{2m} = \frac{\vec{h}^{2}k^{2}}{2m}$$

Abbildung 17: W_{kin} -Temperatur Diagramm

Schrödinger-Gl.

$$\left[\frac{\bar{h}^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + W_p(\vec{r})\right]\Psi(r) = W_n\Psi(\vec{r})$$

 $W_p(\vec{r}) \rightarrow \text{period. Gitterpotential} \rightarrow \text{Unstetigkeiten } k = n \frac{\Pi}{n}$

\mathbf{Si}

- es muss zusätzlich Photon anregen .. verliert Energie kann gap besetzen
- direkte Weg zum besetzen in anderer Raumrichtung
- direkter Halbleiter

Abbildung 18: Silizium

Abbildung 19: Galium-Arsenid

GaAs

 $\bullet\,$ indirekter Halbleiter

 $\rightarrow \! {\rm wichtig}$ für optoelektrische Bauelemente

2.3 Leiterwerkstoffe

Das Bändermodell hat keine "verbotenen" Bereiche, bis E_F (Fermi-Energie) alle Zustände besetzt

T-Abhängigkeit der Leitfähigkeit FERMI-DIRAC-Statistik gilt für alle Teilchen die einen Spin haben (Fermionen)

$$W(E) = \frac{1}{1 + e^{\frac{E - E_F}{kT}}}$$

Abbildung 20: E-W Diagramm

Abbildung 21: Leitfähigkeit Temperatur

Die Energie weicht nicht so stark von der Kastenfunktion ab wie in Abbildung **??** dargestellt.

Abbildung 22: spezifischer Wiederstand

Warum nimmt der spezifische Wiederstand von Leitern mit steigender Temperatur zu (Abbildung 22)? Ursache: thermische Schwingung der Gitteratome

Supraleiter zwei Elektronen mit unterschiedlichem Spin treten miteinander in Beziehung .. sind sehr nah. Temp. ist sehr gering .. das Elektronenpaar bewegt sich ohne Störung durchs Gitter

$$\rho = \rho_0 + \rho(T)$$

$ \rho(T) - \text{bei klein } T \sim T^S $							
ρ_0 - chem	ipnys. Grundschwingung						
Material	spez el. Wiederstand in $10^{-8}\Omega m$	T_k in $10^{-3}k^{-1}$					
Ag	1,5	$_{3,8}$					
Cu	1,7	$_{3,9}$					
Al	2,5	$_{3,9}$					
$\operatorname{Ar}(\operatorname{Gold})$	2,1	3,4					
W (Wolfram)	$5,\!0$	4,5					
Fe	9,0	$4,\!5$					
	1 do						
$T_k = \frac{1}{\rho} \frac{d\rho}{dT}$							

Tabelle 2: Beispiele für Leitfähigkeiten

Aluminium:

- Leiterbahn auf Si (
 \leftarrow endliche Mischbarkeit Al-Si) \rightarrow Diffusion aber Al
Si1 (1 Gewichtsprozent Si) \rightarrow Korngrenzenausscheidung
en \rightarrow Si kann nicht mehr eindiffundieren
- Bonddrähte (Schweißdrähte) der Aluminium
draht ist zu weich, kann Temperaturschwankungen nicht gut verkraften
 \rightarrow AlSi1 verwenden (Abbildung 23)

Abbildung 23: Bonddrähte

Abbildung 24: Inselwachstum

Gold:

• Bonddrähte: eingelagert Be (Berilium)

Dünne Schichten \rightarrow **PVD**, **CVD** bei wenigen Teilchen ist das Problem der Inselwachstum (Abbildung 24), die dann erst später Zusammenwachsen. \rightarrow Elektronen hopping

2.4 Halbleiter-Werkstoffe

- Fermi-Energie liegt in einem verbotenen Bereich
- haben unbesetzbare Energien (für Elektronen des Halbleiter)
- Breite des unbesetzten Gebietes überwindbar

$$f_{AB} = \frac{1}{e^{\frac{E-\mu}{kT}}} \tag{5}$$

Gleichung 5 ist die MAXWELL-BOLTZMNN-St.

- μ chemisches Potential, Arbeit die notwendig ist die Teilchenzahl zu vergrö:sern $\mu_2 = \frac{\partial U}{\partial n_i} = \frac{\partial H}{\partial n_i}$
- \rightarrow molekulare Teilchen (z.B. Elektronen)
- $\rightarrow~{\rm FERMI}{-}{\rm DIRAC}{-}{\rm Statistik}$

Abbildung 25: TODO

Abbildung 26: TODO

$$f(E,T) = \frac{1}{e^{\frac{E-\mu}{kT}} + 1}$$

- $\mu = E_F$ Fermie Energie \approx chemische Potential der Elektronen
- bei Halbleitern verändert die Dotierung die Fermi Energie (Dotierung mit Löchern $F_E \downarrow$)
- 2 unterschiedliche Materialien (Abbildung 27) .. es müss das chemische Potential (die Fermi Energie) ausgeglichen werden

typische Halbleiter Eigenschaften

Gap siehe Tabelle 3

- **Eigenleitung** idealer Halbleiter (therm, elektrisch), intrinsische (intrinsic) Generation von Ladungsträgern
- **Störstellenleitung** dotieren mit Überschuss oder Ladungsträgermangel \rightarrow Leitung durch Dotierungs-Ladungsträger

Abbildung 27: Ausgleich des Fermi-Potentials bei 2 unterschiedlichen Materialien

IV	V	VI
C - 5.2	P -1,5	S - 2,6
S - 1,1	Ag - 1,2	Se - 1,6
Ge - 1,67	Sb - $0,1$	Te - 0,4

Tabelle 3: Gapbreite in Elektronenvolt

Unterscheidung zwischen Rekombinations-Zentren und Trab-Zentren sind beides Kristallefekte die durch chemische Verunreinigungen zustande kommen.

Rekombinations-Zentren liegen über Fermi Energie fangen Elektronen weg \rightarrow Signal wird schwacher

Trab-Zentren sitzen etwas höer als Rekombinationszentren .. Elektronen fallen rein und werden irgendwann wieder frei gelassen \rightarrow Rauschen

Grenzflächenzustände (Abbildung 28) an Grenze zwischen Halbleiter und Isolator \rightarrow chemische und strukturelle Störungen an Grenze des Halbleiters ungesättigte Bindungen \rightarrow elektr. aktiv

Abbildung 28: Grenze zwischen Halbleiter und Isolator

2.5 Isolationswerkstoffe

- Bandlücke ist durch thermische Generation nicht überwindbar
- ionisch-kovalent gebunden keine freien Ladungsträger

Polarisationsmechanismus $\epsilon_r \rightarrow C = \epsilon_0 \epsilon_r \frac{A}{d}$

- Speicherung $\rightarrow \epsilon_r \uparrow$
- Isolation $\rightarrow \epsilon_r \downarrow$

$$\vec{P} = \underbrace{\mathcal{X}}_{\mathcal{X}=\epsilon_r-1} \epsilon_0 * \vec{E} \qquad \vec{D} = \epsilon_0 \vec{E} + \vec{P}$$