
1.0 Anthropometry

! Major branch of anthropology

! Studies physical measurement of the human body to

determine differences in individuals and groups

! A wide variety of physical measurements are required

to describe and differentiate the characteristics of race,

sex, age and body type.

Past emphasis of anthropometry was on evolution and

history.

Technology has driven more recent studies, for example:

! Man-machine interfaces

! Workplace design

! Cockpits

! Pressure suits

! Armour

These studies are usually satisfied by basic linear, area and

volume measures. However, human movement analysis

also requires kinetic measures:

! Masses, moments of inertia and their locations

! Joint centers of rotation



! Origin and insertion of muscles

! Angles of pull of tendons

! Length and cross-sectional area of muscles

1.0.1 Segment Dimensions

! Most basic body dimension is the length of segments

between each joint.

! Varies with body build, sex, race and age.

Kinematic and kinetic analysis requires data regarding

mass distribution, moments of inertia and the like.



1.1.1 Whole-body density

The body consists of many types of tissue – each with its

own density.

For example:

Cortical bone " ~ 1.8

Muscle tissue " # 1.0

Fat " < 1.0

Lung " < 1.0

Average body density is a function of body build or

somatotype:

Endomorph – short and fat

Mesomorph – stout and muscular

Ectomorph – tall and thin.

Usually no definite delineations exist among the types.

Most people have a somatotype consisting of components

of all three types.

Modern ratings (like Heath-Carter somatotype method) are

a qualitative assessment of the amount of all three

components:

! Endomorphic component $ relative fatness of the body

! Mesomorphic component $ musculoskeletal rating per

unit of body height.



! Ectomorphic component $ “linearity” of the body.

Drills and Contini (1966) developed an expression for

body density d as a function of ponderal index c:
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In metric units – h is in meters and w is in kilograms
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Example:

Calculate the whole-body density of an adult with

h = 5/ 10// and w = 170lbs



Imperial:

1/ 3

1/ 3 1/ 3

70
12.64 .

(170)

0.69 0.0297

0.69 0.297 12.64

1.065 /

h
c inch lb

w

d c

Kg L

&% % %

( % '

% ' )

%

metric:

1/ 3
1/ 3 1/ 3

70
1.78

39.4

170
77.3

2.2

1.78
0.418 .

(77.3)

0.69 0.9 0.69 0.9 0.418 1.066 /

h m

w Kg

h
c m Kg

w

d c Kg L

&

% %

% %

% % %

% ' % ' ) %

The ponderal index in a measure of stature or stoutness.

* short, fat people have a lower ponderal index than tall

thin people.



1.1.2 Segment density

! Each body segment has a unique combination of bone,

muscle, fat and other tissue.

* Density within a given segment in not uniform.

! Distal segments usually have higher proportion of bone

* "distal segments > "proximal segments (usually)

! Individual segments increase their density as average

body density increases.
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1.1.3 Segmental Mass and Centre of mass

! Terms – centre of mass and center of gravity are often

used interchangeably

Are they the same?

If over dimension of body g = const.

" centre of mass = centre of gravity

Consider a body segment of mass M –subdivided into n

sections:

      

If mi = mass of the ith section, then:

1

n

i
i

M m
#

#$

If %i = density of the ith section and Vi = the

corresponding volume, then,

i i im V%#

m1 m2

mi mn
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If the density is assumed uniform over the segment, ie,

1 2 3 .... n% % % % %# # # # #

or

  ; 1,i i n% %# #

then        i im V%#

and so     
1

n

i
i

M V%
#

# $

Suppose we measure distance (x) from one end of the

segment. The centre of mass of the segment is such that:

1

n

i i
i

Mx m x
#

#$

[Gravitational torque of centre of mass about an axis

= Sum of the torques of each section about that axis.]

"

  
1

1 n

i i
i

x m x
M #

# $

In three dimensions we have,

1

1 n

i i
i

m
M #

# $r r
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where

( , , )T
i i i ix y z#r = centre of mass of section i.

and

( , , )Tx y z#r = centre of mass of segment.

We can now represent the complex distributed mass by a

single mass M located at distance x from one end of the

segment.

Often in anthropometric data, the centre of mass of a

body segment is given as a fraction of the length of the

segment measured from one end (See Table 3.1 of

Winter).

The end points of the segments are referred to as

markers.

Consider a body segment with markers at r1  and r2:

    

 

x

y

z

r1

(x1,y1,z1)
Centre of mass

r

r2
(x2,y2,z2)

&r
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If &r = r2 – r1, then &r = length of segment.

Suppose the centre of mass is located a fraction f of &r

from r1. Then:

1

1

( )

(1 )

f

f

f f

# ' &

# ' (

# ( '

1 2 1

2

r r r

r r r

r r

Exercise:

Express r as measured from r2.

2 (1 )f# ( ( &r r r

Example:

From anthropometric data calculate the coordinates of

the centre of mass of the foot and thigh given:

Ankle position = (84.9,11.0) cm

Metatarsal position = (101.1,1.3) cm

Greater trochanter = (72.1,92.8) cm

Lateral femoral condyle = (86.4,54.9) cm
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Foot:

Centre of mass of foot is halfway between markers

" f = 0.5

If r1 = (84.9,11.0) & r2 = (101.1,1.3)

Then

 

1 20.5 0.5

(84.9,11.0) (101.1,1.3)

2
(186.0,12.3)

2
(93.0,6.15)cm

# '
'

#

#

#

r r r

Thigh:

Centre of mass is 0.433 × length of thigh from greater

trochanter.

If r1 = (72.1,92.8) & r2 = (86.4,54.9)

" f = 0.433

(72.1,92.8)(1 0.433) (86.4,54.9)(0.433)

(72.1,92.8)(0.567) (86.4,54.9)(0.433)

(78.29,76.39)

(78.3,76.4)cm

) # ( '
# '
#
#

r
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1.1.4 Centre of Mass of a Multisegment System.

With each body segment in motion the centre of mass of

the total body is continuously changing with time.

! It is necessary to recalculate it after each time interval.

This in turn requires a knowledge of the trajectories of

the centre of mass of each body segment.

Consider a 3–segment system.

y      m3 (x3,y3)

m2 (x2,y2)

m1 (x1,y1)

 x

m1 = mass of segment 1 with a centre of mass at (x1,y1)

m2 = mass of segment 2 with a centre of mass at (x2,y2)

m3 = mass of segment 3 with a centre of mass at (x3,y3)

M = m1 + m2 + m3
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Let the centre of mass of the system be at (x0,y0)

Then

1 1 2 2 3 3
0

m x m x m x
x

M

" "
#

and

1 1 2 2 3 3
0

m y m y m y
y

M

" "
#

The centre of mass of the total body is a frequently

calculated variable, however its usefulness in the

assessment of human movement is quite limited.

Example:

The time history of the body centre of mass is often used

to calculate energy changes of the body. But such

calculation can be erroneous – because whole body centre

of mass does not account for energy changes related to

reciprocal movements of limbs, e.g., energy changes

associated with the forward movement of one leg and the

backward movement of the other will not be detected in a

total body centre of mass calculation – because the centre

of mass remains relatively unchanged.

– This will be discussed in the section on mechanical

work, energy and power.
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$ Major use of body centre of mass is in sporting events

such as jumping where the path of the centre of mass is

critical to the success of the event because its trajectory

is decided at takeoff.

$ Also useful in studies of body posture and balance.

1.1.5 Mass, Moment of Inertia and Radius of Gyration.

Location of centre of mass of each segment is needed for

an analysis of translational movement through space.

If accelerations are involved – we need to know the

inertial resistance to such movements.

For linear motion:

F = ma

Where m = mass and is a measure of the segments ability

to resist F.

For rotational motion:

I% &#

Where % = torque = moment of force

I = moment of inertia

& = angular acceleration

! I is the constant of proportional that measures the

ability of the segment to resist changes in angular

velocity, i.e. to resist %.
2 2[ ] . ,   [ ] . ,   [ ] .N m I Kg m rad s% & '# # #
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The value of I depends on the point about which the

rotation occurs.

For a point mass m a distance r from an axis

2I mr# .

For a rigid body I is a minimum when rotation takes place

about an axis through the centre of motion of the body.

Consider the following segment:

2 2 2
1 1 2 2

2

1

... n n

n

i i
i

I m x m x m x

m x
#

# " " "

#(

! The further the mass is from the axis of rotation the

greater its effect, e.g. fly-wheel.

The radius of gyration, k, is defined by:

2 I
k

M
#    :

2

2
i i

i

I k M

I m x

#

#(

m1 m2

mi mn

x1

x2

xi

xn
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The radius of gyration is thus the distance from the axis

at which a point mass M would have the same I as the

body (or segment) of mass M.

1
i i

i

x m x
M

# #(  position of centre of mass

21
i i

i

I
k m x

M M
# # #(  radius of gyration

2
c of m

1
  and  x x dm I x dm

M
# #) )

If I0 is the moment of inertia of the segment about an axis

through its centre of mass then:

2
0 0I Mk#

Where k0 = radius of gyration about an axis through the

centre of mass.

1.1.6 Parallel-Axis Theorem.

$ Most body segments do not rotate about their centre of

mass, but rather about the joint at either end.

$ In vivo measures of I can only be taken about a joint

centre.

$  The relationship between I and I0 is given by the

parallel-axis theorem:

2
0I I Mx# "
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Where,

I0 = moment of inertia about the centre of mass

x = distance between center of mass and centre of

     rotation.

M = mass of segment

  Ar (axis of rotation)    Ac (axis through c of m)

Note: Ar and Ac are parallel.

Example:

(a) A prosthetic leg has a mass of 3Kg and a centre of

mass of 20cm from the knee joint. The radius of gyration

(about the centre of mass) is 14.1cm.

Calculate I about the knee joint.

* +

2 2 2
0

22 2
0

3(0.141) 0.06 .

0.06 3 0.2 0.18 .k

I Mk Kg m

I I Mx Kg m

# # #

# " # " #

x
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(b) If the distance between the knee and hip joints is

42cm, calculate Ih for the prosthesis about the hip joint

as the amputee swings through with a locked knee.

Now x = distance from centre of mass (of prosthetic leg)

to hip joint

2 2 2
0

So,  20 42 62

0.06 3(0.62) 1.21 .h

x cm

I I Mx Kg m

! " !

# ! " ! " !

Note: Ih ~ 20I0.

Example:

Consider a rigid body consisting of two particles of mass

m, connected by a weightless rod of length L.

(a) Axis through c of m

     c of m

m m

   L/2 L/2

What is I about an axis perpendicular to rod and through

the centre of mass of the rigid body?
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2
0

2 2

2

1 1

2 2

1

2

i i
i

I m x

m L m L

mL

!

$ % $ %! "& ' & '
( ) ( )

!

*

(b) Axis through end of rod.

What is I of the body about an axis through one end of the

rod and parallel to the first?

2
0

2

2

2

  where  2

1 1
(2 )

2 2

I I Mx M m m m

I mL m L

mL

! " ! " !

$ %! " & '
( )

!

This result can be checked by direct calculation.

 

2

2 2

2

(0) ( )

i i
i

I m x

m m L

mL

!

! "

!

*

L/2

L

mm
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1.1.7 Use of Anthropometric tables and kinematic

 data.

Table 3.1 in Winter gives:

1. Segment mass as a fraction of body mass.

2. Centre of mass as a fraction of their lengths from

either proximal or distal end.

3. Radius of gyration as a fraction of segment length

about:

a) Centre of mass

b) Proximal end

c) Distal end

4. Density of segment

This information along with kinematic data can be used to

calculate many variables needed for kinetic energy

analysis.

1.1.7.1 Calculation of Segmental Masses and Centres

    of Mass

Example

Calculate the mass of the foot, shank, thigh and HAT and

its location from the proximal or distal end assuming that

the body mass of the subject is 80Kg.

Solution:
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From table 3.1, mass fraction of various segments are:

Foot = 0.0145 + 0.0145 80 1.16fm Kg! , !

Shank = 0.0465 +  0.0465 80 3.72sm Kg! , !

Thigh = 0.10 +  0.10 80 8.0tm Kg! , !

HAT = 0.678 + 0.678 80 54.24Hm Kg! , !

Direct measures of subject yield the following segment

lengths:

Foot  = 0.195m

Shank = 0.435m

Thigh = 0.410m

HAT = 0.295m

+

c of m of foot = 0.50 × 0.195 = 0.098 m between ankle

and metatarsal markers.

c of m of shank = 0.433 × 0.435 = 0.188 m below femoral

condyle marker.

c of m of thigh = 0.433 × 0.410 = 0.178 m below greater

trochanter marker.

c of m of HAT = 1.142 × 0.295 = 0.337 m above greater

trochanter marker.
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1.1.7.2 Calculation of Total-body Centre of mass.

Consider a body composed of n segments, of mass

m1, m2,…,mn.

Suppose the centre of mass of the ith
 segment is (xi,yi,zi)

then the total-body centre of mass in the x direction is:

- .1
               1

i i
i

i
i

i i
i

m x
x

m

m x
M

!

!

*

*

*

If, i
i

m
f

M
! !  fraction of mass segment i to total body mass

Then,

- .               2i i
i

x f x!*

Similarly

i i
i

i i
i

y f y

z f z

!

!

*

*

Equation (2) is easier to use than (1) because all we

require is a knowledge of the fractions of total body mass

and the coordinates of each segment’s centre of mass.
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Example.

A snap shot is taken of a person walking and an analysis

of the position of the centre of mass of the body segments

gives the following:

x(m) y(m)

Segment Right Left Right Left

Foot 0.929 0.560 0.062 0.156

Leg 0.884 0.743 0.358 0.416

Thigh 0.863 0.846 0.773 0.760

½ Hat 0.791 0.791 1.275 1.265

Calculate the position of the centre of mass of the person.

ffoot =  0.0145

fleg =  0.0465

fthigh  =  0.100

f1/2HAT =   0.339

! "

! "
! "
! "

8

1

0.0145 0.929 0.56

                   0.0465 0.884 0.743

                   0.10 0.863 0.846

                   0.339 0.791 0.791

                   0.807

i i
i

x f x

m

#

# # $

$ $

$ $

$ $

#

%

Fractional masses from
table 3.1 – column 3.
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! "

! "
! "
! "

8

1

0.0145 0.062 0.156

                   0.0465 0.358 0.416

                   0.10 0.773 0.760

                   0.339 1.275 1.265

                   1.054

i i
i

y f x

m

#

# # $

$ $

$ $

$ $

#

%

Hence the body centre of mass is at (0.807,1.054) m.

It is not always possible to measure the centre of mass of

every segment– especially if it is not in full view.

1.1.7.3 Calculation of Moment of Inertia.

Example

Calculate the moment of inertia of the leg (shank) about its

centre of mass, its distal end and its proximal end for an

80Kg man with a leg of length 0.435m, given:

Radius of gyration/segment length is:

0.302 for c of m

0.528 for proximal end

0.643 for distal end

I = Mk2

mass of leg = mass of body × fleg

   = 80 0.0465 3.72Kg& #
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! "
! "

! "
! "

! "
! "

2

0 0

2 2

2

2 2

2

2 2

3.72 0.302 0.435 0.064 .

3.72 0.528 0.435 0.196 .

3.72 0.643 0.435 0.291 .

leg

p leg p

d leg d

I m k

Kg m

I m k

Kg m

I m k

Kg m

#

# & & #

#

# & #

#

# & #

Note: Ip and Id  could be calculated using the parallel axis

theorem:

! "

2

2 2

 = distance between the centre of mass and proximal 

      end.

0.433 0.435 0.188

0.064 3.72 0.188 0.196 .

p o leg

p

I I m x

x

m

I Kg m

# $

# & #
'

# $ #

! "

2

2 2

 = distance between the centre of mass and distal 

      end.

0.567 0.435 0.247

0.064 3.72 0.247 0.291 .

p o leg

p

I I m x

x

m

I Kg m

# $

# & #
'

# $ #
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1.2 Direct experimental measures.

For more exact kinematic and kinetic calculations it may

seem preferable to have directly measured anthropometric

values.

However the equipment and techniques that have been

developed have limited capability and sometimes are not

much of an improvement over the values obtained from

tables.

1.2.1 Location of the Anatomical Centre of mass of

 the body.

How can we locate the anatomical centre of mass of the

body?
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By balancing the body!

The anatomical centre of mass of the body can be located

by using a balance (or reaction) board and a set of scales.

Consider the following:
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0( #%

Consider rotation about “hinge”

d = length of board – actually length between supports.

y = distance from hinge to centre of mass of board.

y1 =distance from hinge to centre of mass of body.

E1= scale reading = reaction force at scale support.

W = weight of body.

w = weight of board.

Taking torques about hinge )

1 1

1
1

Wy wy E d

E d wy
y

W

$ #

*
) #

Do we need to measure w and y?

Without the person on the board ( )%

0wy E d#

Where E0 = scale reading with board only.
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1 0
1

( )E E d
y

W

!
" #

Note: If heel does not coincide with position of hinge then

the difference will have to be allowed for.

The above locates the transverse plane passing through

centre of mass.

The frontal plane passing through centre of mass (x1) can

be located by standing on board and facing along the axis

of the board.

Location of x1 – the frontal plane
passing through the body
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The sagittal plane passing through centre of mass (at z1)

can be located in a similar fashion by standing on board

and facing perpendicular to axis of board.

What happens when the subject moves a body segment?

The position of the body centre of mass changes!

Suppose the subject moves both arms over head.

Location of z1 – the sagittal plane
passing through the body
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Let body centre of mass move to y2 and the new scale

reading be E2.

$ %

$ %

2 0
2

2 1
2 1

E E d
y

W

E E d
y y y

W

!
#

!
&' # ! #

which represents the vertical shift in the centre of mass.

(~ 7cm).

1.2.2  Determination of Segmental Masses.

Segment weights can be obtained by the following

procedure, where we consider the determination of the

weight of the two thighs and lower legs.
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Here

W1 = weight of both thighs and lower legs

W2 = weight of rest of body

y1 = distance from hinge (fulcrum) to centre of mass of

thighs and lower legs, in position A1.

y1´ = distance from hinge to centre of mass of thighs and

lower legs, in position A2.

y2 = distance form hinge to centre of mass of rest of

body.

y = distance from hinge to centre of mass of board

d = distance from hinge fulcrum to scale’s fulcrum.

E1 = scale’s reading in position A1.

E2 = scales reading in position A2.

In position A1, 0( #)  about hinge *+

1 1 2 2 1W y W y wy E d, , # (1)

In position A2, 0( #)  about hinge +

1 1 2 2 2'W y W y wy E d, , # (2)
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Eqn(2) – Eqn(1) +

$ %

1 1 1 1 2 1

2 1
1

1 1

'

 
'

W y W y E d E d

E E d
W

y y

! # !
+

!
#

!

Now E1, E2 and d are readily measured.

What about y1 and y1' ?

y1' – y1 = distance the centre of mass of legs has moved

     = distance between centre of mass of legs and

hip joint.

– Get from anthropometric tables

– Major source of error in the above calculations.

The same procedure can be used to measure:

- Weight of lower leg and foot

- Weight of whole arm

- Weight of forearm and hand

- Weight of HAT
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1.2.3 Determination of centre of mass in two direction

 simultaneously.

By using three scales, a support and a large square or

rectangular body, the centre of mass in two directions can

be determined simultaneously.
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Procedure:

- Place board in scales and support (board is horizontal)

- Zero scales

Apply 0( #)  about axis A and axis B.

About axis A:

$ %
3 1 2 1

3 1 2

F d F d Wx

F F d
x

W

, #

,
& #

About axis B:

$ %
2 2 1 2

2 1 2

F d F d Wy

F F d
y

W

, #

,
& #

Where: F1 = reading on scale 1

F2 = reading on scale 2

F3 = reading on scale 3

x = perpendicular distance from axis A to

centre of mass.

y = perpendicular distance from axis B to

centre of mass.

and d1 and d2 are length and width of board.

The above procedure has been used (is used) to determine

centre of mass of athletes or various activities.

Procedure:
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Selected frames of a film are projected on the “board” to

produce life size images. The outline of the image is

traced over. The board in then placed on the scales and

support and the subject gets into the marked position.

Measurement of the centre of mass is then completed.

&  Difficulty in reproducing the exact performance

position. See examples below

Eg 1
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Eg 2

Today researches tend to favor the “segmental method”

discussed earlier (see calculation of total-body centre of

mass). The draw back is that it relies on anthropometric

tables (for the fractional masses fi – see example below).
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1 1

1

   (2D component form)

(vector form)

n n

i i i i
i i

n

i i
i

x f x y f y

f

# #

#

# #

#

) )

)r r

Segmental method of determining total-body centre of

mass (CG = centre of gravity . centre of mass)

1.2.4 Experimental determination of I for distal

 segment.

Given, I( /#  can you think of a way to determine I for a

distal body segment?
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1.3 Muscle anthropometry.

In order to calculate forces produced by individual

muscles during movement, we need to dimensions of the

muscles themselves.

If muscles of same group share a load – they probably do

so proportionally to their relative X-sectional areas.

 Force generation  X-area! "

In addition the mechanical advantage of each muscle can

be different depending upon:

1. Moment arm length at its origin and insertion.

2. On other structures beneath the muscle or tendon

which alter the angle of pull (of tendon) e.g. patella

1.3.1 Cross-Sectional Area of Muscle.

The functional or physiologic X-area (PCA) of a muscle is

a measure of the number of sarcomeres in parallel with the

angle of pull of the muscle.

angle of pull

     sarcomeres

Pennate muscles - fibers act at an angle to long axis.

# not as effective as fibers in a parallel-fibered muscle.
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In parallel–fibered muscle:

m
PCA

l$
%  (cm2)

where:

m = mass of muscle fibers (grams)

$ = density of muscle fibers ~ 1.056 g/cm³

l = length of muscle fibers (cm)

l m = volume×density

   = l A $& &

m
A PCA

l$
! % %

note: PCA perpendicular to line of

pull.

In pennate muscle:

2cos
( )

m
PCA cm

l

'
$

%

' = pennation angle (increases as muscle shortens)

  '     

l

Acos'=PCA

A

'
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V A l

m A l

m
A

l

$

$

% &
% & &

%

but now  PCA = Acos'

#
cos

PCA
A

'
%

(
cosm

PCA
l

'
$

%

Example:

Use the data on leg muscle architecture to determine

whether knee flexor or knee extensors produce the greater

force.

Knee flexors:

Biceps femoris (short and long) PCA = 12.8 cm2

Semimembranosus PCA = 16.9 cm2

Semitendinosus PCA = 5.4 cm2

Gastrocnemius PCA = 32.4 cm2

Total PCA = 67.5 cm2

Knee extensors:

Rectus femoris PCA = 12.7 cm2

Vastus intermedius PCA = 22.3 cm2

Vastus lateralis PCA = 30.6 cm2

Vastus medialis PCA = 21.1 cm2
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Total PCA = 86.7 cm2

# Knee extensors will generate greater force

Does this mean the knee extensors are stronger?

Maybe – maybe not. The torques generated by each group

will decide that.

Note in table 3.4 of Winter PCA is given as a % of total

X-section area for muscles crossing a joint # multi-joint

muscles may have different % at different joints.

1.3.2 Changes in Muscle Length during Movement.

A few studies have investigated the changes in muscle

lengths as a function of joint angles.

Example:

Grieve et al (1978) studied eight cadavers for changes in

length of gastrocnemius as a function of knee and ankle

angle.

Assuming:

Gastrocnemius resting length = knee flexed at 90º and

ankle in intermediate position.

They found (for ankle):

40º plantar-flexion ! muscle shortened 8.5%

20º dorsi-flexion ! muscle lengthened 4%

with a linear response between.
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For knee:

At full extension ! gastroc lengthened by 6.5%

150º flexion ! gastroc shortened by 3%

1.3.3 Muscle stress (Force per unit X–area)

A wide range of stress values have been reported for

skeletal muscles – mainly under isometric contraction.

Values range from 20 – 100 N/cm2.

Higher values tend to by recorded for pennate muscles.

For quadriceps both dynamic and isometric stresses have

been determined:

Dynamic stresses ~ 70N/cm2 have been reported during

running and jumping (based on peak torque production).

Isometric stresses ~ 100N/cm2 reported.

joint angle

M
us

cl
e 

le
ng

th Resting length

PlantarDorsi
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1.3.4 Multi-joint Muscles.

) A large number of muscles in the body cross more

than one joint, e.g.

hamstrings

rectus femoris

gastrocnemius

) Fiber length of many of these muscles may be

insufficient at allow complete range of movement over

both joints, simultaneously. # ?

) Consider the action of the rectus femoris (RF) during

early swing in running. It shortens as a result of hip

flexion (thigh swings forward) and lengthens as a result

of knee flexion (leg swings back).

Tension in the RF simultaneously creates a hip flexor

torque (positive work) to accelerate the thigh and a knee

extensor torque (negative work) to decelerate the

swinging leg and start acceleration forward.

#The (absolute) change in muscle length is reduced

compared with two equivalent single-joint muscles.

Excessive positive and negative work within the muscle

can be reduced.

The two-joint muscle could be totally isometric in the

above e.g. ! transfer of energy from leg to pelvis.
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Exercise

1– Explain contraction of gastrocnemius during

     push-off.

2– Explain contraction of biceps during a punch.
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Section 2 Kinetics: Forces and Torques

2.0 Biomechanical models.

! Kinematics studies movements without regard to the

forces that cause it.

! Kinetics studies these forces and the resulting

energetics.

! Transducers can be implanted surgically to measure the

force exerted by a muscle at the tendon – animal

experiments only!

For humans we attempt to calculate these forces

indirectly using the available kinetic, kinematic and

anthropometric data – the process is called link-

segment modeling.
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Given:

Kinematic description and accurate anthropometric

measures and external forces " joint reaction forces and

muscle torques.

This is called an inverse solution – a very powerful tool

in gaining insight into the net summation of all muscle

activity at each joint.

Such information is useful for coaches, surgeons and

therapists in diagnostic assessment – the effect of training,

therapy, or surgery is evident at this level of assessment,

but is often obscured in the original kinematics.

2.0.1 Link-Segment Model Development.

! Validity of any assessment is only as good as the model

itself.

! Accurate measures of segment masses, centres of mass,

joint centres and moments of inertia are required. Such

data can be obtained from statistical tables or measured

directly (see section on anthropometry).
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! The model makes the following assumptions:

1. Each segment has a fixed mass located as a point

mass at its centre of mass.

2. The location of each segment’s centre of mass

remains fixed during the movement.

3. The joints are considered to be hinge or ball and

socket.

4. I of each segment about its centre of mass (or

proximal or distal joints) is constant during the

movement.

5. The length of each segment remains constant

during the movement.

The above figure shows the relationship between

anatomical and link-segment models.
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Note:

! Segment masses m1, m2 and m3 are considered to be

concentrated at points,

! I1, I2 and I3 are fixed.

! L1, L2 and L3 are fixed.

2.0.2 Forces Acting on the Link-Segment Model.

Gravitational forces.
g acts vertically down through the centre of mass of each

segment with force = mg

Ground reaction or external forces.
External forces are measured by force transducers. Such

forces are distributed over an area of the body (e.g. ground

reaction forces on feet) and apply a ‘pressure’ to the body

part. In order to represent such a ‘pressure’ by a single

vector, they must be considered to act at a point – the

centre of pressure.

Centre of pressure can be calculated from force plates.

Muscle and ligament forces.
The net effect of muscle activity at a joint is calculated in

terms of net muscle torque.
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! When co-contractions take place the analysis yields

only the net effect of agonistic and antagonistic

muscles.

!  In addition any friction effects at the joints or within

the muscle cannot be separated from this net value.

Increased friction merely reduces the effective ‘muscle’

torque.

! At the extreme range of movement (of any joint)

passive structures such as ligaments come into play to

contain the range. Torques produced by these tissues

will add to or subtract from those generated by the

muscles.

! The contribution of passive structures can only be

determined if the muscle is silent.

2.0.3 Joint reaction forces and bone-on-bone forces.

The three forces above constitute all the forces acting on

the total body itself.

However our analysis examines the segments one at a

time.

Therefore we must calculate the reaction between

segments.

A free-body diagram is required for each segment.
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The original link-segment model is broken into its

segmental parts. The breaks are made at the joints and the

forces that act across each joint must be shown on the

resultant free-body diagram. We can now look at each

segment and calculate the unknown joint reaction forces.

Newton’s third law: for each action there is an equal and

opposite reaction.

“If one object exerts a force F on a second, then the

second object exerts an equal but opposite force – F on the

first”

# there are equal and opposite forces acting at each joint

Consider joint 2 in the above diagram:

Let R2,2 = reaction force at joint 2 on segment 2
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and R2,1 = reaction force at joint 2 on segment 1

Newton’s third law # R2,1 = –R2,2

$ %

$ %

$ %

2,2 2,2 2,2

2,1 2,1 2,1

2,1 2,2 2,2

If 

 ,   

and

,

then

 ,

x y

x y

x y

R R

R R

R R

&

'

'

' ( (

R

R

R

Since we need only refer to the joint, the above notation

can be simplified.

2,2 2 2,2y 2

2,2 2 2 2,1 2 2 2 2

Setting and ,  

( , ) and ( , ) ( , )

x x y

x y x y x y

R R R R

R R R R R R

' ' #

' ' ( ' ( (R R

Note: In the free-body diagram above, the opposite

directions of the reaction force components on the two

segments indicates that the forces are equal & opposite

across the joint.

Example:

When leg is held off the ground in a static condition,

weight of foot exerts a downward force on tendons and

ligaments crossing the ankle joint. This is seen as a

downward force acting on the leg, equal to the weight of

the foot.
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The reaction force at the ankle joint is the upward force

exerted by the leg on the foot through the same connective

tissue. This force is also equal in magnitude to the weight

of the foot.

Don’t confuse joint reaction forces with joint bone-on-

bone forces!

Bone-on-bone forces are forces acting across the

articulating surfaces and include the effect of muscle

activity.

Actively contracting muscles pull the articulating surfaces

together, creating compressive forces and sometimes shear

forces (they may pull the joint apart – dislocating

component) –See page 79 of Winter for more details.

Leg

Foot

Force of foot on leg

Force of leg on foot
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2.1 Basic Link Segment Equations – The free-body

diagram.

! Each body segment acts independently under the

influence of reaction forces and muscle torques, which

act at either end + the forces due to gravity.

Consider the planar movement of a segment in which the

kinematics, anthropometrics and reaction forces at the

distal end are known.

The free-body diagram is.

       

 

Known:

(ax, ay) = acceleration of segment centre of mass.

) = angle of segment in plane of movement.

* = angular acceleration of segment in plane of

       movement.

*

Ryp

Rxp

ax

ay

d2

Ryd

Rxd
)

mg

+d

+p

d1
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(Rxd, Ryd) = reaction forces acting at distal end of segment

(usually determined from a prior analysis of

the proximal forces acting on distal segment).

+d = net muscle torque acting at distal joint (usually

determined from an analysis of the proximal muscle

acting on distal segment).

Unknown:

(Rxp, Ryp) = reaction forces acting at proximal joint.

+p = net muscle torque acting at proximal joint.

Equations:

Newton’s second law of linear motion #

For 2-dimensional motion this can be written as

(1)

 and 

(2)

From the free-body diagram equations (1) & (2) lead to

  for motion in the x direction

 for motion i

x x

y y

xp xd x

yp yd y

m

F ma

F ma

R R ma

R R mg ma

'

'

'

( '

( ( '

,

,

,

F a

n the y direction
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Where:

! For the x motion; forces to the right go into equation (1)

as +ve, while for the forces to the left go into equation

(1) as –ve.

! For the y motion; forces up go into equation (2) as +ve,

while forces down go into equation (2) as –ve.

Expressing the unknowns on the right-hand side (LHS)

and the knowns on the left-hand side (RHS) we have

( )

xp xd x

yp yd y

R R ma

R R m g a

" #

" # #

Thus from Newton’s 2nd law we can find the reaction force

at the proximal end of the segment.

To find the muscle torque at the proximal end we use

Newton’s 2nd law of rotational motion, i.e., I$ %"&

' (

0

2 2 1 1 0

2 1 2

Taking rotation about centre of mass, this is written as;

(3)

From the free-body diagram we sum over all torques to obtain

cos sin cos sin

cos

yp xp p yd xd d

yp yd xp x

I

R d R d R d R d I

R d R d R d R

$ %

) ) $ ) ) $ %

)

"

* # # * * "

+

# * #

&

' (1 0sind p dd I) $ $ %# * "



12

Where:

! Anti-clockwise torques; go into equation (3) as +ve.

! Clockwise torques; go into equation (3) as –ve.

Note that we can not calculate ,$p until Rxp and Ryp have

been calculated. That is, we must solve equations (1) & (2)

before equation (3).

Putting the unknown on the LHS and collecting the

unknowns on the RHS, the torque equation becomes,

' ( ' (0 2 1 2 1cos sinp yp yd xp xd dI R d R d R d R d$ % ) ) $" * # # # # .

Example 1:

In a static situation, a person stands on one foot on a force

plate. The ground reaction force acts 4cm anterior to the

ankle joint.

The subject mass is 60Kg

The mass of the foot is 0.9Kg with a centre of mass 6cm

anterior to the ankle.

Calculate the joint reaction forces and net muscle torque at

the ankle.
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Free-body diagram

Note: by convention Ry is up and Rx is to the right.

0  (person is not moving)

60 9.8 588
x

y

R

R N

"
" - "

1– x xF ma"&

+ 0xp xR R# "    + 0 0 0xp xpR R# " + "

2

588 0.9 9.8 0

588 8.82 579.8

y y

yp y y

yp

yp

F ma

R R mg ma

R

R N

* "

+ # * "

+ # * - "

+ " * # " *

&

Negative sign + force is acting down.

Ryp

Rxp

mg

Ry

Rx

$d

4 cm

6 cm
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3– Torque about centre of mass

' ( ' (

0

00.02 0.06 0

0.02 0.06

588 0.02 579.2 0.06

22.99 .

p y yp

p y yp

p

I

R R I

R R

N m

$ %

$ %

$

$

"

+ * - * - " "

+ " - # -

" - # * -

+ " *

&

The actual situation is;

+

! A muscle torque of 22.99 N.m acts on the ankle

! Plantar-flexors are active at the ankle joint to maintain

the static position.

579.2 N

588 N

22.99 N.m

Plantar flexors – Gastrocnemius, Soleus, Tibialis

posterior, Peroneus longus, Peroneus brevis, Plantaris,

Flexor digitorum longus, Flexor hallucis longus.
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Example 2:

From the data collected during the swing of the foot,

calculate the muscle torque and reaction force at the ankle.

We have:

Subject mass = 80Kg

Ankle-metatarsal length = 20.0cm

Video analysis gives the following info:

Angle ()) of axis of foot with horizontal = * 800

(i.e., 800 clockwise from +ve x-axis.)
2

2

2

9.07 /

6.62 /

21.69 /

x

y

a m s

a m s

rad s%

"

" *

"

Solution:

Free-body diagram

  

d1

d2 mg

Rxp

d3

Ryp

ax

%

ay

$p)
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Solution

Anthropometry:

M = 80 Kg

Foot length = 20.0 cm

Using anthropometric tables !

m = 0.0145×80 = 1.16Kg

" #

" #

0

2 2
0

1 2

3

2

0.475 0.20 0.095

1.16 0.095 0.0105 .

distance ankle joint to centre of mass = 0.5×20 =10 cm

10sin80 9.85

10cos80 1.74

1

1.16 9.07 /

10.52

2

x x

xp

y y

yp y

yp

k m

I Kg m

d cm d

d cm

F ma

R Kg m s

N

F ma

R mg ma

R m

$ % $ &

$ $

&

$ $ $

$ $

' $

& $ %

$

' $

& ' $

& $

(

(

" #
( )

1.16 9.8 6.62 3.69

yg a

N

'

$ ' $
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0

1 3 0

0 1 3

3 At centre of mass of foot 

0.0105 21.69 10.52 0.0985 3.69 0.0174

0.23 1.04 0.06

1.33 N.m

p xp yp

p xp yp

I

R d R d I

I R d R d

) *

) *

) *

' $

& ' % ' % $

& $ + +

$ % + % + %
$ + +
$

(

Note:

1. The horizontal reaction force of 10.52 N is the cause

of the horizontal acceleration that is measured.

2. The foot is decelerating its upward rise at the end of

lift-off & Ryp (3.69 N) is somewhat less than the

static gravitational force (11.37 N)

3. ) = positive & dorsifelxor activity (Tibialis anterior,

Extensor digitorum longus, Peroneus tertius,

Extensor hallucis longus)

Most of this torque (1.04 out of 1.33) goes to

horizontal acceleration of foot’s centre of mass. Only

0.23 Nm goes to angular acceleration of the foots low

I0.
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Example 3:

For the same instant in time, as in example 2, calculate the

muscle torque and the reaction forces at the knee joint.

The leg segment is 43.5 cm long.

Video analysis gives the following information:

2

2

2

0.03 m/s

4.21 m/s

36.9 rad/s

43

x

y

a

a

*
,

$ '

$ '

$
$ -

Solution

Free-body diagram

    

18.0
430

24.66

18.84 12.8

16.8

13.8

Lengths in cm

)d

)p

Ryd

Ryp

Rxp

Rxd 430

'4.21 m.s-2

36.9 rad.s-2

'0.03 m.s-2

mg
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Anthropometry:

Using anthropometrical tables:

m = 0.0465×80 = 3.72 Kg

knee to centre of mass length = 0.433×43.5 cm

= 18.84 cm

centre of mass to ankle length = 43.5 – 18.84

 = 24.66 cm

[Note; these two lengths are shown in the above diagram,

where the moment arms of the joint reaction forces are

also shown]

From Eg 2 we have

                 

10.52 N

3.69 N

1.33 N

xd

yd

d

R

R

)

$

$

$

" #

1

10.52 3.72 0.03 10.41 N

x x

xp xd x

xp xd x

xp

F ma

R R ma

R R ma

R

' $

' $

& $ +

$ + ' $

(

Newton’s third law – note that in the
free-body diagram the directional
sense has been reversed after
crossing the ankle.
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" #
" #

2

3.69 3.72 9.8 4.21 24.48 N

y y

yp yd y

yp yd y yd y

F ma

R R mg ma

R R mg ma R m g a

' $

' ' $

! $ + + $ + +

$ + ' $

(

0

0

0

3  About the centre of mass of leg,  

0.168 0.180 0.128 0.138

0.168 0.180 0.128 0.138

1.33 0.168 10.52 0.180 3.69 0.128 10.41

0.138 24.48 0.0642 36.9

p d xd yd xp yp

p d xd yd xp yp

I

R R R R I

R R R R I

) *

) ) *

) ) *

' $

& ' ' + ' + $

& $ + ' + ' +

$ + % ' % + %
' % + %

$

(

1.33 1.77 0.664 1.33 3.38 2.37

2.67 N.mp)
+ ' + ' +

. $

Note:

1. )p is positive & a counterclockwise) acting on knee

& knee extensor dominates i.e. quads are rapidly

extending the swinging leg.

2. The net angular acceleration of the leg is the net

result of reaction forces and muscles torques at either

end. There is no single primary force causing the

movement observed – all play a significant role.



21

2.2 Force Transducer and force plates.

In order to measure the force exerted by the human body

on an external body or load, we need a suitable measuring

device. Such a device is called a force transducer. It gives

an electrical signal proportional to the applied force e.g.

Strain gauge

Piezoelectric

Piezoresistive

Capacitive and others

All work on the principle that the applied force causes a

certain amount of strain within the transducer.

2.2.1 Multidirectional Force Transducers.

In order to measure forces in two or more directions it is

necessary to use a bi or tri-directional force transducer.

Such a device consists of 2 or 3 transducers mounted at

right angles.

Need to ensure that the applied force acts through the

central axis of each of the individual transducers.
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2.2.2 Force plates.

Most common force acting on the human body is ground

reaction force – acts during standing, walking, running.

This force vector is 3D – consisting of a vertical

component and 2 shear components in horizontal plane

The shear components are usually resolved into

anterior – posterior (x)

and

medial – lateral  (z)

What else do we need?

We need the location of the centre of pressure!

The foot is supported over a varying surface area, with

different pressures at each part – we would be faced with

the expensive problem calculating the net effect of all

these pressures as they change with time.

For most applications it is sufficient to know the centre of

pressure only.

F
y

x

zFz

Fy

Fx
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A force plate can give us Fx, Fy, Fz and centre of

pressure – necessary to complete the inverse solution.

There are two common types of plates:

1. A flat plate supported by four triaxial transducers.

    

The four transducers are located at (0,0,0), (X,0,0), (0,0,Z)

and (X,0,Z).

x – component of F:

! " ! " ! " ! "0,0,0 ,0,0 0,0, ,0,x x x x xF F F X F Z F X Z# $ $ $

y – component F:

! " ! " ! " ! "0,0,0 ,0,0 0,0, ,0,y y y y yF F F X F Z F X Z# $ $ $

z – component F:

! " ! " ! " ! "0,0,0 ,0,0 0,0, ,0,z z z z zF F F X F Z F X Z# $ $ $

Thus we have

! ", ,x y zF F F#F

X

Fy(X, 0,0)

Fy(0,0,0) Fy(0,0,Z)

Fy(X,0,Z)

(X,0,0)

(0,0,Z)(0,0,0)

(X,0,Z)

(x,0,z)

F

Z
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How do we find centre of pressure? i.e. how do we

determine (x,0,z)?

Suppose all four Fy’s were equal?

% (x,0,z) was at the exact centre of the plate.

i.e. x=X/2

z=Z/2

In general,

! " ! "! " ! " ! "! "

! " ! "! " ! " ! "! "

,0,0 ,0, 0,0,0 0,0,
1

2

0,0, ,0, 0,0,0 ,0,0
1

2

y y y y

y

y y y y

y

F X F X Z F F ZX
x

F

F Z F X Z F F XZ
z

F

& '$ ( $
# $) *

) *+ ,
& '$ ( $

# $) *
) *+ ,

Fy(0,Z) up

Fy(X,0) up
Fy(0,0) up

Fy(X,Z) up

(X,Z)
(0,Z)

(0,0)

(X,0)
x

z

,
2 2

X Z- .
/ 0
1 2

z

Fy down
3

3

x

(x,z)
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Exercise:

Derive these expressions. Hint: revise “determination of

centre of mass in 2D” this time taking axes A and B

through mid-point of force plate and parallel to x and z

axes.

Why do we require the 4 transducers instead of 3

transducers plus 1 support?

2. Central support force plate

One centrally instrumental pillar supporting an upper flat

plate.

The action force of the foot Fy acts downward.

Fx is the anterior-posterior shear, either forward or

backward (we have shown it backward)
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0

0

0 about central axis of support

0z y x

x z

y

F x F y

F y
x

F

4

4

4

#

% ( $ #

$
% #

5

4z = torque (bending moment) about axis of rotation of

support

y0 = distance from support axis to force plate surface.

Fx, Fy and 4z  (all measured) continuously change with

time % x can be calculated to show centre of pressure

moving across force plate.

The above figure shows typical force plate data for a

subject walking at normal speed.



27

As the heel strikes the plate:

! Fy (vertical reaction force) rapidly rises to a value in

excess of body weight.

! Fx is negative (backward) – if not the foot would slide

forward i.e. on ice.

! "z is positive (anti-clockwise)

As the knee flexes during midstance:

! Fy drops to below body weight

! Fx is small

! "z is small

At push off:

! Fy again rises above body weight – body is being

accelerated up as the plantar flexors become active.

! Fx is positive – accelerating the body forward – if not

the foot would slip backward.

! "z is slightly negative (clockwise)

Throughout the movement the centre of pressure will

move forward from the heel to toes relative to the foot.

Note: The reaction force components are the algebraic

sums of all mass × acceleration products of all body

segments.

So for an N–segment system this #:
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1.
1

N

x i xi
i

F m a
$

$%

where Fx = x-component of reaction force

axi = acceleration of ith-segment centre of mass

in the x direction.

2. y i yi
i

F Mg m a& $%
but

i
i

Mg m g$%
thus

y i i yi
i i

F m g m a& $% %
therefore

' (
1

 
N

y i yi
i

F m a g
$

$ )%

Where ayi = acceleration of ith-segment centre of mass

in y-direction.

g = magnitude of acceleration due to gravity.

When a person stands perfectly still on a plate

1

N

y i
i

F m g Mg
$

$ $% .

If yF Mg$

Then is the person perfectly still? That is, are all body

parts stationary?
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No! (not necessarily)

The person could be acceleration one arm up at the same

rate they are accelerating the other down.

* Interpretation of ground reaction forces as far as what

individual segments are doing is virtually impossible.

! One ground reaction force may be due to a number of

different motions of the segments.

! Combination of general reaction forces and kinematic

data allows a “complete” description of motion.

! Force plate data and kinematic data (video) must be

synchronized! (They came from completely separate

systems).

2.3.3 Combined Force plate and kinematic data.

It is necessary to combine data form force plates with

segment kinematics to calculate muscle torques and

reaction forces at joints.

Example:

Consider the ankle joint during dynamic stance.

A subject in the push off stance records the following

kinematic data:
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2

2

2

3.25 m/s

1.78 m/s

45.35 rad/s

x

y

a

a

+

$

$

$ &

The free-body diagram and necessary anthropometry are

set out below.

    

    

2
0

1.12

0.01 .

footm Kg

I Kg m

$

$

Other data is shown on the diagram.

a = ankle at position (89.7,16.0) cm

m = metatarsal at position (100.9,0.9) cm

p = centre of pressure at position (103.2,0.0) cm

h = heel, position not required for the problem.

(89.7,16.0)

(95.3,8.4)

(103.2,0)

(100.9,0.9)
Fx=160.25 N

Fy=765.96 N

h

Fax

Fay

a

m

p

"a

mg
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Solution: (Working from the above free-body diagram)

.

1.12 3.25 160.25

156.6 N

x x

ax x x

ax x x

F ma

F F ma

F ma F

$

# ) $

# $ &

$ , &
$ &

%1

' (
' (

.

1.12 1.78 9.81 765.96

753.0 N

y y

ay y y

ay y y

F ma

F mg F ma

F m a g F

$

# & ) $

# $ ) &

$ ) &

$ &

%2

' ( ' (
' ( ' (

' (

0

0

.  (about centre of mass)

0.084 0 1.032 0.953

0.160 0.084 0.953 0.897

0.084 0.079 0.076 0.056

0.01 45.35

0.01 45.35 160.25 0.084 765.96 0.079

156.6 0.076 7

a x y

ax ay

a x y ax ay

a

I

F F

F F I

F F F F

" +

"

+

"

"

$

# ) & ) &

& & & & $

# ) , ) , & , & ,

$ , &

# $ & , & , & ,

& , &

%3

53.0 0.056

128.5 N.m

,
$ &

Ex

Draw “correct” diagram and add interpretation.
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2.2.4 Interpretation of torque curves

Consider the torques about the ankle, knee and hip joints

of a patient fitted with a total hip replacement.

The plot shows 3 repeat trials.

Recall the convention for torque – positive torques are

anticlockwise, negative torques are clockwise.

Thus:

Plantar flexor torque is negative

Knee extensor torque is positive

Hip extensor torque is negative
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Consider the plots. The torques are plotted during stance

– from heel contact at t = 0 to toe-off at t = 680 ms.

1. Ankle joint

!First 80 ms – ankle generates positive " as the

dorsiflexors act eccentrically to lower the foot to the

ground.

!Then the plantarflexors start to act # negative ".

!In mid-stance they act to control the amount of

forward rotation of the leg over the foot, which is flat

on the ground.

!In late-stance they peak in order to produce “push-off”.

This peak is usually deeper in normals – but is reduced

in this case because of the pathology related to hip

replacement.

!Just before toe-off " $ 0 – the limb is said to be

unloaded as the other foot now bears body weight. For

the last 90 ms the toe is just touching the force plate.

2. Knee joint

!The knee extensors are effectively active during all

stance # positive ".

!A little bit of knee flexor activity is evident just as the

heel strikes # eccentric action of  hamstrings in

slowing down knee extension around heel strike.
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!Quads are active in early stance to control the amount

knee flexion as leg supports body weight.

!In mid-stance they act to extend the knee

!During push-off the knee starts flexing in preparation

for swing; the quads act eccentrically to control the

amount of knee flexion.

3. Hip joint

!At heel contact, "h is negative # extensors are active.

This remains the case until % mid-stance. This has two

functions:

1. The hip extensors act on the thigh to assist quads in

controlling knee flexion

2. The hip extensors act to control forward rotation of

the upper body as it attempts to rotate forward over

the hip joints.

!In the latter half of stance "h is positive # hip flexors

are active to:

1. Initially reverse backward rotation of thigh

2. Pull the thigh forward & upward  – occurs

around the time of toe-off.

Top curve

"s = "k –"a–"h  (support torque)

= sum of extensor torques
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Called support torque because it represents a total limb

pattern to push away from the ground.

2.2.5 Differences between centre of mass and centre of

pressure.

Centre of mass was defined in the section “Centre of mass

of a multi-segment system” – it’s the weighted average of

the centre of mass of each body segment

& ' & '1
, ,i i i

i

x y m x y
M

( )

It depends upon the relative mass of each segment (mi/M)

and its relative position (xi,yi) – it is independent of

velocity and acceleration.

Centre of pressure is quite independent of centre of mass.

It is the location of the ground reaction force. It is equal

and opposite to a weighted average of the locations of all

downward (action) forces acting on the ground.

These forces are under the motor control of the ankle

muscles. The centre of pressure is the neuromuscular

response to imbalances of the bodies centre of mass.

Consider a person standing still on a force plate
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Think of the body as an inverted pendulum, pivoting about

the ankle. The centre of pressure moves in response to

movement of centre of mass in an attempt to establish

equilibrium.
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What happens if the centre of mass moves beyond the

toes? – you are forced to move a limb.

2.3 Bone-on-bone forces during dynamic conditions.

! Link-segment models assumes:

1. A hinge joint.

2. Muscle torque is generated by a torque motor.

" Reaction force across joint is the same as bone-on-

bone force at joint.

! But muscles are linear motors not torque motors.

" The presence of additional compressive and shear

forces across the joint surfaces.

! Thus in a more rigorous analysis the free body diagram

should include these additional muscle-induced forces.

! In addition at the extreme range of joint movement

force from ligaments and other anatomical constraints

become important; we continue to ignore these.

#m

Fm
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2.3.1 Indeterminacy in muscle force estimates.

! Estimating muscle force is a major problem – even with

good estimates of muscle torques at each joint.

! The solution is essentially indeterminate – more

unknowns than there are equations.

! A knowledge of the tension in individual muscle, as a

function of time, during human movement would be of

considerable value.

The torque generated at any time t, by a muscle i crossing

a joint j is given by:

$ % $ % $ %i i it t t# & 'r F .

Where

ri(t) = displacement vector drawn from the centre of

   rotation to the attachment site of muscle i.

Fi(t) = tension (vector) in muscle i.

(

Muscle attachment site

Centre of rotation

ri(t) Segment 2

Segment 1
Fi(t)
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If

$ % $ % $ %$ %sini id t r t t(&  – moment arm of Fi(t)

then

$ % $ % $ %i i it F t d t# &

 = magnitude of torque due to muscle i at any

    time t.

If we consider motion in a plane only, then the net muscle

torque about a joint is the algebraic sum of all

anticlockwise torques minus the algebraic sum of all

clockwise torques, i.e.

$ % $ % $ % $ % $ %
1 1

       
a cN N

j ai ai ci ci
i i

F t d t F t d t#
& &

& ) ) *+ +

Where:

Na = Number of muscles producing anticlockwise torque.

Nc = Number of muscles producing clockwise torque.

Fai(t) = Force of ith muscle producing anticlockwise # at t.

Fci(t) = Force of ith muscle producing clockwise #  at t.

dai(t) = Moment arm of ith muscle producing

    anticlockwise #  at t.

dci(t) = Moment arm of ith muscle producing clockwise #   

    at t.
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Example:

For the knee, the joint is the knee joint, so

j , k

The knee extensors produce anticlockwise torque, so

a, e

The knee flexors produce clockwise torque, so

c , f

Therefore equation $ %*  may be written as

$ % $ % $ % $ %
1 1

fe NN

k ei ei fi fi
i i

F t d t F t d t#
& &

& )+ +

Ne = number of knee extensors

Nf = number of knee flexors
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Example:

Consider the torque being produced about the ankle during

late stance.
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Formally the net ankle torque (which comes form an

inverse solution) is given by,

$ % $ % $ % $ % $ %
1 1

pd NN

a di di pi pi
i i

t F t d t F t d t#
& &

& )+ +     – (†)

Where

Nd = number of dorsiflexors

Np = number of plantarflexors

In this equation

#a(t) is known – comes form inverse solution.

ddi and dpi are known – assume we can get these moment

arms form muscle anthropometry.

But the tension (force) in the dorsiflexors and

plantarflexors in unknown.

So we have one equation in about 12 unknowns

(4 dorsiflexors and 8 plantarflexors)

This problem is indeterminate! How do we solve it?

The indeterminacy problem is solved by assuming:

1. No co-contraction of agonists and antagonists

2. The stress of each active muscle is equal.

In the present example assumption 1 means that there is no

co-contraction of plantarflexors and dorsiflexors. Since the

foot is in late stance, the plantarflexors are active in

producing plantar flexion, hence this assumption

" Fdi(t) = 0 for all i, i.e. for all dorsiflexors.
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Thus equation (†) reduces to,

$ % $ %
1

pN

a pi pi
i

F t d t#
&

& )+ – (#)

Recall that the tension in a muscle can be written as,

F = PCA×S

Where,

PCA = physiologic (functional) cross-sectional area

S = muscle stress (force per cross-sectional area)

[See section 1 – muscle anthropometry]

Assumption 2 says that S is the same for all muscles,

therefore,

i iF PCA S& '

Where,

Fi = tension in muscle i

PCAi = functional cross-sectional area of muscle i

With this assumption equation (#) reduces to,

$ % $ %
1

pN

a pi pi
i

PCA S t d t#
&

& )+

Where,

PCApi = functional cross-sectional area of the ith

      Plantarflexor and

$ % $ %pi piF t PCA S t& . – (††)

So
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$ % $ % $ %
1

pN

a pi pi
i

t S t PCA d t#
&

& ) + – (##)

Both PCApi and dpi come from muscle anthropometry,

there equation (##) is solved for S(t)

" $ % $ %

$ %
1

p

a
N

pi pi
i

t
S t

PCA d t

#

&

)
&

+

With the numerator of the above solution coming form the

inverse solution and the denominator coming from muscle

anthropometry.

Having solved for S(t), we can then use S(t) in equation

(††) to calculate the tension in any of the plantarflexors

(Fpi(t)) at time t in the movement.
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3. Mechanical work, energy and power

3.0 Introduction

! In any biomechanical analysis, energetics is an

important aspect.

! Without energy flows movement is not possible.

! Mechanical work calculations are essential in efficiency

assessment of sport & work related tasks.

! Joint mechanical power is important in assessment of

human motion.

We need to have certain terms & laws related to

mechanical energy, work & power clearly in mind.

3.0.1 Mechanical Energy and Work

! Mechanical energy and work have the same units

(joules).

!  Mechanical energy is a measure of the state of a body

at an instant in time as to its ability to do work.

E.g. A body with 200 J of kinetic energy & 150 J of

potential energy is capable of doing 350 J of work

(on another body).
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! Work is the measure of energy flow from one body to

another & time must elapse for that work to be done. If

the energy flows from body A to body B, we say body

A does work on body B.

Example:

If A is a muscle and B is a segment, then muscle A can do

work on segment B if energy flows from the muscle to the

segment.

3.0.2 Law of conservation of energy

Change in energy of a system = work done on system

" #    3.1i
i

E E W$ % $ %&

The sum is over all forms of energy in the system.

At all points in the body & at all instances in time the law

of conservation of energy applies.

Example:

Any body will change its energy only if there is a flow of

energy into or out of any adjacent structure (tendons,

ligaments or joint contact surfaces).

For a body segment equation (3.1) can be written as,
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$Esegment = net flow of energy into segment            (3.2)

Example:

Consider a segment which is in contact at the proximal

and distal ends & has 4 muscle attachments. With this

arrangement there are 6 possible routes for energy flow.

The various flows are as shown.

What is the energy change of the segment?

Conservation of energy ((3.2)) '

4 5.3 2.4 1.7 0.2 3.8 6.0sE J$ % ( ( ) ) ) %

If this flow occurs over a time period of 20ms, what is the

power flow into the segment?

Recall, power is the rate of doing work, i.e.

4 5.3 2.4 1.7 0.2 3.8

0.02
6.0

300
0.02

s
s

E
P

t

W

$
%
$

( ( ) ) )
%

% %
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Energy conservation * energy storage within segment.

Energy storage within segments takes the form of potential

and kinetic energy (both translational and rotational).

Thus Es at any time = PE+KE, irrespectively of energy

flows into and out of the segment.

3.0.3 Internal and external work

! Muscles are the only source of mechanical energy

generation in the body. They are also a major site of

energy absorption.

! Only a very small fraction of energy is dissipated into

heat as a result of joint friction and viscosity in the

connective tissue.

! Mechanical energy is continuously flowing into and out

of muscles and from segment to segment. To reach an

external load, many energy changes may occur in the

segments between the source and external load.

Example:
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The work rate in lifting an external load may be 200W.

This may however require an additional 400W of power

by source muscles to perform the task.

So,

Winternal + Wexternal = 600W

Where

Winternal = changing Mechanical energy of body

segments

Wexternal = work done lifting external load

! For movements like walking and running, there is no

external load – all energy generation and absorption is

required to move the body segments themselves.
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! A distinction is made between work done on body

segments and work done on external loads.

Work done on body segments in called internal work

Work done on external loads is called external work

Lifting weights, pushing a car and cycling on an

ergometer have well-defined loads.

! There is one exception to the external work definition:

– lifting ones body weight to a new height.

Thus running up a hill involves both internal and

external work.

! External work can be negative if an external force is

exerted on the body and the body gives way.

E.g. tackling, catching a ball.

Can internal work be negative?

 3.1 Efficiency

The term efficiency is problematic when applied to human

movement energetics.

Metabolic energy is converted to mechanical energy at the

tendons.

Metabolic efficiency depends upon:

1. Condition of each muscle.

2. Metabolic state of muscle (fatigue).
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3. Subject’s diet.

4. Any possible metabolic disorder.

A definition of metabolic or muscle efficiency would be;

muslces ofn consumptioenergy  metabolic

muscles allby  done work mechanical
  efficiency (muscle) Metabolic
&%

This is impossible to calculate because:

1. Can’t calculate work of each muscle

2. Can’t isolate metabolic energy of muscle

i.e. neither the numerator nor the denominator are known!

With this in mind we could define a mechanical efficiency

as

cost metabolic resting -cost  metabolic

external)(internl work Mechanical
  efficiency Mechanical

(
%

Resting metabolic cost in cycling, for example, could be

the cost associated with sitting still on the bicycle.

Internal work? Can it be determined readily?

A definition of work efficiency is:

cost metabolic work zero -cost metabolic

 workmechanical External
  efficiencyWork %

In the cycling example, zero-work cost would be the cost

measured with the cyclist freewheeling.

For equal levels of work (external);
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The metabolic cost of positive work + metabolic cost of

negative work.

However negative W is not (usually) negligible.

Level gait has equal amount of positive and negative W,

i.e.

W+ = W-

Uphill gait * W+ + W-

Downhill gait * W+ , W-

In general human movements have varying amounts of

positive and negative work, and since the metabolic cost

of positive and negative are different

' efficiency calculations yield numbers that are strongly

influenced by the relative percentages of positive and

negative work.

Attempts to get around this problem involve ‘splitting’ the

efficiency into ‘positive’ and ‘negative’ work components.

Metabolic cost of W+ + metabolic cost of W- = metabolic

cost.

Define

e+ = W+/(metabolic cost of W+)

e) = W-/(metabolic cost of W))
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!
W W

 metabolic cost
e e
" #

" #

" $

if  W+ = W#, then e# % e+.

Example:

Application of the work-energy principle for running with

and without shoes.

The consumption of metabolic energy during physical

activity can be quantified by measuring O2 consumption of

the athlete during the activity of interest.

Measurement of O2 consumption for running barefoot and

running with shoes typically shows about 5% in favor of

barefoot running.

& running barefoot requires less O2 and therefore

less energy.

! More efficient? – cover same distance with less energy

expenditure.

A 5% energy gain is substantial – if this energy saving can

be transferred to a time saving

! running barefoot would gain about 6 –7 minutes for

the marathon and about 0.5 seconds for the 100 meter

sprint.

' worthy of a closer look.
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Questions to be answered.

Determine the additional mechanical work that an athlete

wearing shoes must do,

1. Against gravity

2. To accelerate the additional shoe mass.

Assumptions:

1. Metabolic cost of marathon runner ~ 10MJ

2. Mass of shoe = 100g (light)

3. Each foot (and shoe) is lifted during each step by

(h = 0.2m

4. The maximal speed of the swing leg during the swing

phase is 10m/s (middle – long distance running)

5. Step length (left toe – right toe) is 2m.

n ~ 20,000 steps during marathon.

Solution:

Additional work against gravity.

 
2

Extra work per stride

             20,000 0.1 10 / 0.2

             4,000

gr

mg h

W n mg h

Kg m s m

J

$ ( (
&( $ ( (

$ ) ) )
$

Additional work done in the acceleration of shoe mass.

Work done per stride in acceleration shoe = (KE of shoe.
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21
KE

2
mv( $ (

Therefore total additional work done in accelerating shoe

is,

* +

2

2

1

2
1

20,000 0.1 10 /
2

100,000

accW n mv

Kg m s

J

( $ (

$ ) ) )

$

! Total extra work ~ 105J

5

7

Extra work 10
1%

Metabolic cost 10
! $ $  increase
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3.1.1 Positive work of muscles.

Positive work is done during a concentric contraction,

when the muscle torque acts in the same direction as the

angular velocity of the segment.

If

,m = +ve and -s = +ve

then

m m sP , -$ $  +ve ! +ve W

If

,m = #ve  &  -s = #ve

then

m m sP , -$ $  +ve ! +ve W
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3.1.2 Negative work of muscles

Negative work is done during eccentric contraction, when

muscle torque acts in the opposite direction to angular

velocity of the segment.

This usually happens when an external force Fext acts on

the segment and creates a joint torque > ,m.

If

,m = +ve and -s = #ve

then

m m sP , -$ $  #ve ! #ve W

If

,m = #ve  &  -s = +ve

then

m m sP , -$ $  #ve ! #ve W
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3.1.3 Muscle mechanical power.

. Rate of work done by most muscles is rarely constant

with time.

. At a given joint, muscle power is the product of net

muscle moment and angular velocity.

m j jP , -$

Where

Pm = muscle power

,j   = net muscle torque about joint j

-j  = joint angular velocity

As already discussed Pm = positive or negative. Even

during simple movements, Pm may reverse sign several

times.

Example:

Consider extension and flexion of the forearm
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Note:

,j and -j ~ 90º out of phase.

t1 – t2 triceps do +ve work – they accelerate extension.

t2 – t3 biceps do #ve work – they decelerate extension.

t3 – t4 biceps do +ve work – they accelerate flexion.

t4 – t5 triceps do –ve work – they accelerate flexion.

3.1.4 Mechanical work of muscles.

Power = rate of doing work

dW
P

dt
$

Thus to determine work from power we must integrate

power w.r.t time, over the time period of interest.
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* +

* +
f

i

t

t

dW P t dt

W P t dt

$

& $ /

Where,

W = work done during time period ti to tf.

In the above example the work done during the period t1 to

t2 is,

2

1

t

m m

t

W P dt$ /  = area under power curve between t1 and t2.

Work done from t1 to t2 is positive.

Work done from t2 to t3 is negative.

Work done from t3 to t4 is positive.

Work done from t4 to t5 is negative.

If the forearm returns to the starting position, then the net

mechanical work is zero meaning,

* +
5

1

0
t

m

t

P t dt $/

Therefore, if we wish to calculate positive and negative

work done, then it is critical to know the exact time when

Pm changes sign.
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Example:

The power output of the muscles of a human movement

involving flexion and extension about a joint can be

approximated by a sine curve, i.e.

! "sin 4 /mP A t T#$   W

Where,

A = the peak power produced

T = the period of the movement.

(a) What is the work done over half a movement period?

TEx

time

P
ow

er

F1

A

%j

T/4 T/2

Note the period of the power = ½ period of the movement
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! "

! "

! "

/ 2

0

/ 2

0

/ 2

0

/ 2

0

sin 4 /

sin 4 /

4
cos

4

4
cos

4

f

i

t

m m

t

T

m

T

T

T

W P t dt

W A t T dt

A t T dt

t T
A

T

T t
A

T

#

#

#
#

#
#

$

& $

$

' () *$ + ,- ./ 01 23 4

' () *$ + - ./ 01 23 4

5

5

5

! "

! "

4
cos cos 0

4 2

1 1
4

0

T T
A

T

AT

#
#

#

' () *$ + +- ./ 0,1 23 4

$ + +

$

(b) What is the work done over the first ¼ of T.

! "

! "

/ 4

0

/ 4

0

4
sin

4
cos

4

(+ve work

4
cos cos 0

4 4

4
1 1   

4 2
)

T

m

T

t
W A dt

T

T t
A

T

AT T

T

T AT

#

#
#

#
#

# #

) *$ - .
1 2

' () *$ + - ./ 01 23 4

' () *$ + +- ./ 0,1 23 4

$ + + + $

5

(c) What is the work done over the second ¼ of T?
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! "! "

/ 2

/ 4

4
cos

4

4 4
cos cos

4 2 4

1 1  ( )
4

 ve wo
2

rk

T

m

T

AT t
W

T

AT T T

T T

AT AT

#
#

# #
#

# #

' () *$ + - ./ 01 23 4

' () * ) *$ + +- . - ./ 01 2 1 23 4

$ + + + $ + +

Explain why the work done over ½ a period is zero.

The positive work of concentric contraction for the first ¼

of T is cancelled by the negative work of eccentric

contraction for the second ¼ of T.

3.1.5 Mechanical work done on an external load.

When a body, or a segment of the body exerts a force on

an external body, it can only do work if there is

movement.

In this case the work is given by the product of the force

acting and the displacement of the body in the direction of

the applied force.

When a force F acts over an infinitesimal displacement ds

it does work

dW d$ 6F s

If the force F acts over a finite distance between points s1

and s2 on a line, then



20

2

1

W d$ 65
s

s

F s

If the force F which acts over an infinitesimal

displacement ds, does so in time dt, then the power is,

dW d
P

dt dt
$ $ 6 $ 6

s
F F v

i.e.

P = Fvcos(7)

x x y yP F v F v$ 8   (for 2D motion)

Then

;  if    

( ) ;  for general 2D motion

f

i

f

i

f

i

t

t

t

t

t

x x y y

t

W Pdt dt

Fv dt

F v F v dt

$ $ 6

$

$ 8

5 5

5

5

F v

F v!

Example:

A ball is thrown with a constant accelerating force of

100N for a period of 180ms. The mass of the ball is 1.0Kg

and it starts from rest.

Calculate the work done on the ball during the time of

force application.

In general both F and
v are time dependent.

7

F

v
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Solution:

2

2

100
100 m/s

1.0
1

2

m
m

ut at

$ 9 $ $ $

$ 8

F
F a a

s

starts from rest 9 u = 0 m/s

given t = 0.18 s

! "21
0 100 0.18 1.62 m

2fS9 $ 8 , , $

Where Sf = the value of s when the ball leaves the hand.

: ;

0

0

0

;  (assuming   d )

100 1.62 162 J

f

f

s

S

S

f

W Fds

F ds

F s FS

< $

$

$ $ $ , $

5

5

F s!

Example:

A ball of mass 1Kg is thrown with a force that varies time,

as indicated below.
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The velocity of the ball in the direction of the force is also

plotted on the same time base and was calculated from

! " ! " ! "
0 0

t t F t
v t a t dt dt

m
$ $5 5

m = 1Kg 9 F and a have same numerical value.

Calculate the instantaneous power given to the ball and the

total work done on the ball during the throwing period.

Solution:

P Fv$

For a given time t multiply the corresponding values of

F(t) and v(t) to give P(t):



23

! " ! " ! "

! " ! "
0

t

P t F t v t

W t P t dt

#

# $

At any time t, W(t) = area under the P(t) curve from 0%t

What is the situation when the ball is caught?

Force is in the same direction (as above) – but velocity is

in the opposite direction 

& Power and work done are negative.

&ball is doing work on the body.

3.1.6 Mechanical energy transfer between segments.

Each body segment exerts forces on its neighboring

segments. If there is a translational movement of the joint

as a result of this then the mechanical energy transferred

between segments i.e. one segment does work on another.

This work is in addition to the muscular work described

above.
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Fj1 = Reaction force at the joint of segment two on

 segment one.

Fj2 = Reaction force at the joint of segment one on

 segment two.

vj = velocity of joint.

'1 = angle between Fj1 and vj.

'2 = angle between Fj2 and vj.

Note: 1 2 180' '( # )  because Fj1 = –Fj2

Power going to segment 1:

1 1 1 1cosj j j jP F v '# * #F v

Power going to segment 2:

2 2 2 2 1 1cos cosj j j j j jP F v F v' '# * # # +F v

That is

2 1P P# +

& Power flowing into one segment = power flowing out

of the other.

& Net power production (by the process) = zero.

In an n joint system, the algebraic sum of the n power

flows will be zero & these power flows are passive and do

not add to or subtract from total body energy.

Thus joint reaction forces may transfer energy between

segments, but they do not add energy to or take it form the

body.
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This mechanism of energy transfer between adjacent

segments is quite important in the conservation of energy

of any movement because it is passive and does not

require muscle activity.

Example:

In walking, at the end of swing, the swinging foot and leg

loose much of their energy by transfer upward through the

thigh to the trunk, here it is conserved and converted to

kinetic energy to accelerate the upper body forward.

3.2 Causes of inefficient movement

, Difficult to focus directly on efficiency.

, More expedient to focus on the causes of inefficiency

and thereby improve the efficiency of the movement.

There are four major causes of mechanical inefficiency

1. Co-contractions

, Inefficient, because muscles fight against each other.

Suppose a certain movement can be accomplished with

30 N.mf- #  (flexor torque)

The most efficient way to do this is to have,

0 N.me- #  (extensor torque)

30 N.mf- #  (flexor torque)
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However any number of possibilities exist, e.g.

10 N.m

40 N.m
e

f

-
-
#
#

or

20 N.m

50 N.m
e

f

-
-
#
#

but these are inefficient.

In the latter case there is an unnecessary 20 N.m of - in

both the extensors and flexors.

& The flexors are doing unnecessary positive work to

overcome the negative work of the extensors.

   Co-contractions occur in many pathologies ,e.g.,

hemiplegia & spastic cerebral palsy.

They also occur to some extent during normal

movement, when it is necessary to stabilize a joint –

especially in heavy lifting & explosive events.

At present measurement of co-contraction is only possible

by monitoring the EMG activity of the antagonistic muscle

– but this does not give quantitative info.
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Winter and Falconer quantify co-contraction by,

% contraction 2 100%antag

agon antag

-
- -

# . .
(

Example:

If

50 .

20 .

agon

antag

N m

N m

-

-

#

#

then

20 40
% contraction 2 100% 100% 57%

50 20 70
# . . # . #

(

2. Isometric Contractions against Gravity

In normal movement minimal muscle activity is devoted

to holding limb segments against gravity – momentum of

body & limbs allows for a smooth interchange of energy.

, Unnecessary isometric tension of muscles is inefficient!

WHY ?

, In many pathologies movements are so slow that there

are periods when the limbs and/or the trunk are held in

near-isometric contraction.

Example:

People with spastic cerebral palsy often over crouch with

knees flexed
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& Excessive quadriceps activity is required to stop them

from falling.

In isometric contraction against g no work is done! (no

movement). EMG shows “extra” muscle activity, therefore

“extra” metabolic energy is being consumed.

No valid technique exist to separate the metabolic cost of

this inefficiency.

3. Generation of Energy at One Joint and Absorption at

Another

This type of inefficiency arises when positive work at one

joint occurs at the same time as negative work at others.

– It’s an extension of co-contraction.

Example:

During normal walking if occurs during double support,

when the energy increase of push-off at one leg (positive

W) occurs at the same time as energy absorption (negative

W) at heel strike of the other.

In the above figure:
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Positive work being mainly done by the left plantar

flexors is being canceled to some extent by negative work

of the right dorsiflexors and knee extensors.

(Positive work about left ankle, partially cancelled by

negative work about the right knee and right ankle)

The only way to analyse such inefficiencies is to calculate

Pm at each joint separately & to quantify the overlap of

simultaneous phases of positive and negative W.

Keep in mind that such inefficiencies are often necessary

for stability and safety – activities like walking & running

are complex, requiring several functions to be done

simultaneously.

Pm

Pm

Left ankle

Right ankle

Time
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4. Jerky Movements

Efficient energy exchanges are characterized by smooth-

looking movements (e.g. ballet dancer, high jumper,

weight lifting). Energy added to the body by positive W at

one point in time is conserved and little is lost by muscles

doing negative W.

On the other hand, jerky movements are inefficient –

energy added at one time is removed a fraction of a second

later.

Succession of starts & stops

& bursts of +ve and +ve W

 excess metabolic cost.

This energy cost can be assessed by:

1. Segment-by-segment energy analysis

2. Joint-by-joint power analysis.

Done later ?
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3.3 Forms of energy storage.

1. Potential energy – due to gravity.

PE mgh#

h = height above some reference point.

The h = 0 reference point should be carefully chosen to

fit the problem in question.

Normally it is taken as the lowest point the body takes

during the given movement.

2. Kinetic energy – energy of movement.

Two forms:

1) Translational Kinetic energy = 21

2
mv

2) Rotational kinetic energy = 21

2
I/

Note:

1. Kinetic energy increases as the velocity squared

2. Polarity of direction of velocity is unimportant as

velocity squared is always positive.

3. Lowest level of kinetic energy = 0, when the body is

at rest.
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1. Total energy and exchange within a segment.

The total energy of a body or segment is,

2 21 1

2 2

sE PE TKE RKE

mgh mv I!

" # #

" # #

It is possible for a body to exchange energy within itself

and still maintain a constant Es?

Consider a person spinning on an angular momentum

table.

 

 

0 0

0 0

0 0 0 0

2

2 2
0 0 0 0

0

                                       2

1
                                     

2
                                  

1 1 1 1
          2

2 2 2 2

   

I I I I

L I L I I

RKE I RKE I I

RKE

! ! ! !

! ! !

! ! !

" "

" "

" " "

$ %" " " & ' (
) *

" 0 0 0

1 1
                       

4 2
I RKE!" "

+ half of RKE0 is gone! Where?

h h
,h
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- .

0

potential energy before abduction

potential energy after abduction

conservation of energy ( .)

1

2

PE mgh

PE mg h h

PE RKE const

mg h RKE

" "

" # , "

# " +

, "

Example:

A spherical ball of mass 300g and radius 5cm is thrown

into the air. It reaches a height of 20m, at which it has a

forward speed of 20m/s and a backspin of 5rev/s. What is

the total energy of the ball?

Solution:

sE PE TKE RKE" # #

Taking the ground to be h = 0, we have

- .

- .

- . - .

22

22 2

2 2

0.3 9.8 20 58.8

1 0.3
20 60.0

2 2
1 1 2

5 2
2 2 5

1
0.3 0.05 10 0.15

5
58.8 60.0 0.15 118.95s

PE mgh J

TKE mv J

RKE I mr

J

E J

! /

/

" " & & "

" " & "

" " & & &

" & & & "

0 " # # "

(assume the sphere to be a uniform solid)

Note: For this ball traveling up and down there will be a

transfer of energy between PE and TKE.
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How can there be a change in RKE?

3.3.1 Energy of a body segment and exchanges of

 energy within the segment.

In most kinds of human movement, most body segments

contain all three energies in various combinations at any

given time.

Throughout such movements there is usually exchange of

energy between the three types.

For multi-segment systems such exchanges can be very

complex – there can be exchanges within a segment or

between adjacent segments.

Example:

During gait, HAT has 2 peaks of PE each stride – during

mid-stance of each leg. At this time HAT has slowed its vx

to a minimum. Then as the body falls forward to double

support HAT increases vx at the expense of h.
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From the fig:

Peaks at mid-stance

PE ~ sinusoidal

Minima at double-stance

Peaks at

double-stance

vx ~ completely out of phase (180º)

minima at

mid-stance

1 Exchanges of energy within a segment are characterized

by opposite changes of PE and KE components.

1 If the exchange is perfect (as in a swinging frictionless

pendulum) then Es is constant + no energy is being

added or lost.
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1 Consider the other extreme – in which no energy

exchange takes place. This situation is characterized by

‘totally’ in-phase energy components – not necessarily

of equal magnitude.
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3.3.1.1 Estimation of energy exchange.

Within a segment the energy exchange can be estimated if

the peak-to-peak change in each energy component is

known (over some ,t).

Peak-to-peak

ex p t r sE E E E E" , # , # , 2 ,

Energy exchange

If there is no exchange (Eex = 0), then

p t r sE E E E, # , # , " ,

If there is 100% exchange, then ,Es = 0.

Example:

A visual scan of the energies of the leg segment during

walking yields the following maximum and minimum

energies on the stride period.

- .
- .
- .
- .

max 29.30

max 15.18

max 13.63

max 0.95

s

p

t

r

E J

E J

E J

E J

"

"

"

"

- .
- .
- .
- .

min 13.14

min 13.02

min 0.09

min 0

s

p

t

r

E J

E J

E J

E J

"

"

"

"

Estimate the energy exchange.

Solution:
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We have,

29.30 13.14 16.16 J

15.18 13.02 2.16 J

13.63 0.09 13.54 J

0.95 0 0.95 J

2.16 13.54 0.95 16.65 J

s

p

t

r

p t r

E

E

E

E

E E E

, " 2 "

, " 2 "

, " 2 "

, " 2 "
+
, # , # , " # # "

So

16.65 16.16

0.49 J
exE " 2

"

i.e. 0.49 J of energy was exchanged during the stride!

or

0.49
100 2.9%

16.65
& "  was exchanged.

    + Highly non-conservative!

3.3.1.2 Exact formula for energy exchange within

    segments.

The above example illustrates a simple situation – only

one minimum and maximum over time period (,t).

If energy components have several maximum and

minimum – must calculate the sum of absolute energy

changes over ,t.

The work Ws done on and by a segment during N sample

periods is,
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1

N

s s
i

W E
"

" ,3

If no energy exchanges occur (between components) the

work done on and by the segment is

- .
1

'
N

s p t r
i

W E E E
"

" , # , # ,3

+ The energy conserved is,

'c s sW W W" 2

+ The percentage conserved is,

100%
'

c
s

s

W
C

W
" &

If 's sW W" +  all three components are in phase and no

energy in conserved.

Conversely, if ' 0,   ' 100%s c sW W W" " +  of energy is

being conserved.

3.3.2 Total energy of a multi-segment system.

If Esi = total energy of the ith segment, then the total body

energy Eb at t is,

1

B

b si
i

E E
"

"3

Where

B = number of body segments.

Note: Individual segments continuously change their

energy with time + Eb changes with time.
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However in interpreting the changes in Eb care must be

taken because:

1) There is considerable potential for energy transfer

between segments 0 efficiency in movement.

2) There are a number of possible generators and

absorbers of energy at each joint 0 inefficiency in

movement.

The transfer of energy between segments will not change

Eb. There may be several simultaneously concentric and

eccentric contractions, e.g. in a given time period two

muscles groups may generate 30 J while a third may

absorb 20 J + net change of 10 J.

Only a detailed analysis of mechanical power at the joints

will tell us the extent of such cancellation.

Consider a simple muscular system represented by a

pendulum mass and a pair of antagonistic muscle groups

m1 and m2, crossing a simple hinge joint.
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The figure shows this arrangement along with the time

history of the total energy of the system.

At t1 the segment is rotating anticlockwise at some !s – no

muscle activity until t2 + normal pendulum exchange

between t1 and t2.

Therefore constant Eb.

At t2, m2 contracts concentrically increasing both KE and

PE, this continues until t3. 4m and !s have the same sense

of rotation + +ve work between t2 and t3.

5  Eb increases.

At t3, m2 stops contracting and there is no muscle activity

until t4 + pendulum exchange.

Therefore Eb is constant between t3 and t4 (at higher level).

At t4, m1 contracts eccentrically to slow segment + loss of

KE. 4m and !s have opposite senses of rotation therefore

negative work is done between t4 and t5.
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5  Eb decreases.

After t5 muscles relax and pendulum exchange occurs

+ constant Eb until contraction.

This simple model can be extended to more complex

systems.

In general:

1) Positive work done by muscles increases Eb.

2) Negative work done by muscles decreases Eb.

3) For cyclical activity (e.g. level running) ,Eb per cycle

(stride) = 0 + +ve W = 2ve W.
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3.5 Power Balance at Joint and within Segments.

So far we have considered (with respect to energy and

power):

1) Conservation of mechanical energy within a segment

(section 3.0.2)

2) Muscle mechanical power (section 3.1.3)

3) Passive energy transfer across joints (section 3.1.6)

Here we look a t the transfer of energy from segment to

segment due to active muscles – in addition to their role of

generation and absorption of energy.

3.5.1 Energy Transfer via muscles.

Muscles can transfer energy from one segment to another

if the two segments are rotating in the same direction.

The figure shows two segments rotating in the same

direction but with different !’s.
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The product of "m!2 is positive ("m and !2 have same

polarity)

#  Energy is flowing into segment 2 from muscles

producing "m.

On the other hand, "m!1 in negative ("m and !1 have

opposite polarity).

#  Energy is flowing out of segment 1 and entering the

muscle.

If !1 = !2 (isometric contraction)

# Energy rate into 2 = energy rate out of 1

If !1 > !2 (muscles lengthening)

# Absorption and transfer take place

or energy rate into 2 = energy rate out of 1

– absorption at muscle

If !1 < !2 (muscles shortening)

# Generation and transfer take place.

or energy rate into 2 = energy rate out of 1

+ generation at muscle.

The following table gives a summary of all possible power

functions that can occur at a joint.
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In section 3.1.3 ‘muscle mechanical power’ we had the

equation for the muscle power at a joint,

m j jP " !$

In view of the above, we modify this equation to include

the angular velocities of the adjacent segments,

% &1 2m j j
P " ! !$ '

Thus if !1 and !2 have the same polarity, the rate of

transfer will be the lesser of the two power components.
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3.5.2 Power Balance within Segments.

Energy can enter or leave a segment at muscles and across

joints at the proximal end and distal ends.

Passive transfer across joints,

P $ (F v  

Where F = joint reaction force

v = velocity of joint centre of

                  rotation.

and active transfer plus absorption or generation,

% &1 2m jP " ! !$ '

must be calculated.
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Consider the following as the state of a given segment at

some point and time.

Fyp

  vyp

    vxp

Fxp

"p

    !s

Fyd

 vyd

     

 "d      vxd

p

d

p p p xp xp yp yp

m p s

d d d xd xd yd yd

m d s

P F v F v

P

P F v F v

P

" !

" !

$ ( $ )

$

$ ( $ )

$

F v

F v

Reaction forces and velocities at joint centers (proximal

and distal) are shown, plus muscle torques (proximal and

distal) and segment !, are shown.

Fxd
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The total energy,

2 21 1

2 2sE mgh mv I!$ ) )

needs to be known.

The power balance of the segment is,

jp xp xp yp ypP F v F v$ )

mp p sP " !$

md d sP " !$

jd xd xd yd ydP F v F v$ )

The arrows show the direction of the positive power flows

(energy entering the segment at joints and tendons).

If the force-velocity or the torque-! products turn out to

be negative # energy flow is leaving the segment.

Conservation of energy #
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s
jp mp jd md

dE
P P P P

dt
$ ) ) )

Example:

Carry out a power balance for the leg and the thigh

segments for frame 5, i.e. deduce the dynamics of energy

flow for each segment separately and determine the power

dynamics of the knee muscles (generation, absorption or

transfer?)

Solution:

The information that we require is:

1) Joint centre velocities (hip, knee and ankle)

2) Reaction forces at joints

3) Muscle torques on segments

4) Segment angular velocity

Frame 5

Table A.2a, hip velocities:

vxh = 1.36 m/s,  vyh = 0.27 m/s

Table A.2b, knee velocities:

vxk = 2.61 m/s,  vyk = 0.37 m/s

Table A.2c, ankle velocities:
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vxa = 3.02 m/s,  vya = 0.07 m/s

Table A.3b, leg angular velocity:

!l = 1.24 rad/s

Table A.3c, thigh angular velocity:

!t = 3.98 rad/s

Table A.5a, leg segment reaction forces and torques:

15.1 N

12.3 N

1.1 N.m

xk

xa

a

F

F

"

$

$ '

$ '

14.6 N

5.5 N

5.8 N.m

yk

ya

k

F

F

"

$

$

$

Table A.5b, thigh segment reaction forces and torques:

9.4 N

15.1 N

8.5 N.m

xh

xk

h

F

F

"

$ '

$ '

$

102.8 N

14.6 N

5.8 N.m

yh

yk

k

F

F

"

$

$ '

$ '

For each segment the power flow is,

F jp mp jd mdP P P P P$ ) ) )

Thus, leg power flow is,
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15.1 2.61 14.6 0.37 5.8 1.24 12.3 3.02

5.5 0.07 1.1 1.24

44.81 7.19 36.76 1.36

13.88 W

F jk mk ja ma

k k k l a a a l

xk xk yk yk k l xa xa ya ya a l

P P P P P

F v F v F v F v

" ! " !

" ! " !

$ ) ) )

$ ( ) ) ( )

$ ) ) ) ) )

$ * ) * ) * ' *
) * ' *
$ ) ' '
$

F v F v

Rate of change of total energy (El) for leg?

13.88l
jk mk ja ma

dE
P P P P W

dt
$ ) ) ) $

We can obtain dEl/dt from table A.6

El(frame 6) = 20.5J, El(frame 4) = 20.0J

So,

% & % & % &frame 5 frame 6 frame 4

time of two frames
l l ll

E E EdE

dt t

+ '
$

+
!

i.e.

% &frame 5 20.5 20.0
17.5 W

0.0286
Balance = 17.5 13.88 3.6 W

lE

t

+ '
$ $

+
' $

Thigh power flow is,
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% & % &
% & % &

9.4,102.8 1.36,0.27 8.5 3.98

15.1, 14.6 2.61,0.37 5.8 3.98

14.97 33.83 44.81 23.08

19.09 W

F jh mh jk mk

h h h t k k k t

P P P P P

" ! " !

$ ) ) )

$ ( ) ) ( )

$ ' ( ) *

) ' ' ( ' *

$ ) ' '
$ '

F v F v

From table A.6,

% & % &
% & % & % &

% &

frame 6 47.4 ,     frame 4 47.9

frame 5 frame 6 frame 4

0.0286
47.4 4.79

17.5 W
0.286

Balance 17.5 19.09 1.59 W

t t

t t tt

t
F

E J E J

dE E EE

dt t

E
P

t

$ $

'+
, $

+
'

$ $ '

+
$ ' $ ' ' ' $
+

!
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Summary of power flows:

23.08 W leaves the thigh into the knee extensors

("k (of leg) = +ve).

7.19 W enters the leg from the same extensors

#Knee extensors actively transfer 7.19 W and

simultaneously absorb 15.88 W.

33.83 W

7.19 W
15.89 W

23.08 W

14.97 W

36.76 W 1.36 W

44.81W
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4. Throw-like and Push-like Movement Patterns.

When a performer ‘throws’ or ‘pushes’ an object the

objectives are:

1. To project the object the greatest vertical or

horizontal distance (e.g. javelin, discus, shot-put)

or

2. To project an object primarily for accuracy – speed of

projection may enhance the effectiveness of this (e.g.

darts, cricket, baseball, basketball)

Within each of these groups of skills, biomechanical

factors and principles govern how the body’s segmental

movements best produce the desired accuracy or speed

required.

Let’s look at some terminology:

! Movement pattern – a general series of anatomical

movements that have common elements of spatial

configuration (e.g. same plane of motion).

Within a movement pattern, individual segmental

movements may vary slightly in ROM’s, velocities and

planes of motion.

Throwing, kicking and pushing are all general movement

patterns. These patterns may be further subdivided,
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according to where the movements occur relative to the

body.

e.g.

underarm patterns

Throwing pattern sidearm patterns

overarm patterns

! Skill – when a general movement pattern is adapted

within the constraints of some particular movement

activity or sport it is called a skill.

! Constraints – factors that influence the time and space

variables e.g.

– Mass of object

– Mass of implement

– Size of object

– Size of target

– Size of playing area
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Open and closed chain movements:

! Open skills – performed in an unpredictable

environment (e.g. catching, striking, basketball shot)

! Closed skills – performed in a predictable environment

(e.g. archery, basketball free throw, hammering a nail)

! Open kinetic chain exercise – body segments move in

combination and end segment is free to move in space

! Closed kinetic chain exercise – end segment meets with

‘considerable’ resistance, which prohibits or restrains its

free motion.

Usually:

Throw-like patterns are open

Push-like patterns can be either (maybe

emphasis on closed)

4.1 Throw-like patterns: Sequential Segmental

      Rotations.

! Throw-like pattern – object or end segment starts from

behind proximal segment and ends up in front.

! Includes kicking, striking and batting.
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Objectives:

Project an object for greatest distance (horizontal or
vertical)
Project an object for accuracy – where velocity of object
enhances its effectiveness

Velocity of object at release is most important variable.
Velocity of release depends upon velocity of contact point
that object has with hand, foot, or implement being used
" high ‘end-point’ velocity.

4.1.1 Open Kinetic Link Model.

To illustrate the generation of high end-point velocity,

consider a three segment system, with segments A, B and

C with axis of rotations a, b and c.

Muscle torques between segment A and ‘ground’ are

external to system and can therefore change L.
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Muscle torques between A and B, and B and C are inter-

segmental (internal to system) and therefore do not change

L.

To see how it functions consider the following situation:

1. Muscles to the right of segment A apply external #

large enough to accelerate segment A clockwise.

2. Inter-segmental muscle #’s A–B and B–C work to

resist lagging back or anticlockwise motion of distal

segments relative to proximal segment as system is

accelerated clockwise. If #m A–B and B–C were not

applied segments B and C would lag back.

3. The external # applied to A accelerates the entire

system and gives it its L0 (LA+B+C)

4. Now suppose a second external # acts to left of axis a.

This decelerates A and tends to ‘fix’ axis b in space.

Segments B and C are free to rotate about axis b.

5. Segments B and C have smaller I about axis b than

axis a.

Conservation of L $ angular velocity of segments B and

   C increases.

" High end-point velocity.
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Consider the above model applied to the following human

model

A = trunk a = hip joint

B = arm b = shoulder joint

C = hand c = wrist joint

Hip flexors produce the initial angular acceleration of

system.

What is the end-point velocity?
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It is linear! We have been talking about angular velocity.

Recall,

v r%'

Where:

r = radius of rotation

   = perpendicular distance between contact point of

      object being projected and axis of rotation.

Implements such as bats and racquets give large end-point

speeds because they have large r.

Suppose in the above figure we stabilize the chain and

allow each segment to move one at a time, with each joint

under going a 300 (0.524rad) rotation in 0.5sec.

0.524
1.048 rad/s for each joint

0.5
95 cm   ( distance from hip to fingers)

48 cm   ( distance from shoulder to fingers)

14 cm   ( distance from wrist to fingers)

95 1.048 99.6 cm/s

(veloc

hip

sh

wr

hip

r

r

r

v

%" ' '

' +

' +

' +

"
' , '

ity at fingers due to rotation about hip only)

48 1.048 50.3 cm/s

14 1.048 14.67 cm/s
sh

wr

v

v

' , '

' , '

Clearly large r " large v
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So, to maximize end-point speed –maximize both the

angular velocity and r. To achieve this timing

(coordination between segments) is important.

4.2 Sequencing Segmental Rotations: The Kinetic

      Link Principle.

Open kinetic link systems have the following

characteristics.

1. System links have a base, or fixed end and a free or

open end.

2. More massive segments are proximal – less massive

ones are distal.

3. External torque applied to base segment initiates the

systems motion.

4. Distal segments lag behind (initially)

If the distal joints are free to rotate, the kinetic links act

like a whip.

! Tapering of distal masses $ smaller I as segment

becomes more distal " increasing % of distal segment.

! As proximal segments decelerate, axis of rotation

moves distal " decreasing I and increasing % of distal

segment.
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! Ideally deceleration of proximal segments occurs soon

after mid range when % = maximum for proximal

segment.

The deceleration of a proximal segment maybe caused by:

1. Muscles that are antagonists to the motion occurring

in the proximal segment.

2. Inter-segmental muscles between the proximal

segment and the next distal segment – As the

adjoining distal segment accelerates the proximal

segment decelerates.

4.2.1 A Model of an Open Kinetic Link System.

To illustrate the effect of acceleration and deceleration of

proximal segment on distal ones, consider the following

conceptual model.
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This is a five segment system and may be truncated or

added to.

A, B, C, D, E; proximal " distal

Example:

A – pelvis rotating about longitudinal hip axis

B – trunk rotating about longitudinal vertebral

Axis

C – shoulder girdle  protracting about longitudinal

 sternoclavicular axis
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D – arm medially rotating about longitudinal

shoulder axis

E – forearm extending about an ML elbow axis

F – hand hand (and ball) flexing about ML

wrist axis

! Muscle torques denoted by ‘squiggly’ lines.

! Shows % as a function of time (% – angular velocity of

end segment)

! +- - accelerating segment

! –- - decelerating segment

I – moment of inertia. The I’s decrease in size to signify

the decrease in I as we go proximal to distal.

% still continues to rise even when muscle torques stop

because of the decreasing I as the proximal segment

decelerates.

Throw-like movements performed while in the air?
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4.3 Lever vs. Wheel-Axle Rotations.

! Lever and wheel-axle mechanisms, were discussed in

Biomechanics 1.

! Both are used in segmental movements associated with

the kinetic link model.

Lever-type motions are most common (flexion-

extension, abduction-adduction, protraction-retraction)

Wheel-axle motions occur around longitudinal axis of

segment (medial and lateral rotation, left and right

rotation, pronation-supination, inversion-eversion)

! Both are rotating systems " if a high linear velocity is

desired then both # and r (radius of rotation) should be

maximized (v = r#).

Consider r:

In the throwing, kicking and striking movement one often

likes to adjust the distance from point of contact (or

release) to axis of rotation, i.e. r.

Example:

In a kicking skill using knee extension, the leg and foot

acts as the lever – to decrease the r for this lever-like

movement, one must contact the ball on the tibia – an

unlikely choice.
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! Unlike lever systems, the wheel-axle mechanism has an

adjustable r. By extending the ‘wheel’ segment relative

to the axle segment r can be increased or decreased.

! Never the less levers tend to have the larger r

– because they use the ‘full’ extension of segments.

Consider # :

The amount of # a segment achieves depends upon I and

$.

2
or  

and  

I

mk
t

$
%

$
%

# %

&

&

!
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For a fixed $, % can be changed only by changing k. So,

Smaller k " larger %

or

larger k " smaller %

This puts us in a dilemma!

If one increases r to increase v (v = r#) one also increases

k ' increase in I ' decrease in % ' decrease in #.

There is a way to theoretically solve this problem.

Consider the following lever and wheel-axle

arrangements.
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Therefore if #L = #WA a much greater muscle torque will

be required to produce #L, than #WA.

‘Fairer’ to start with equal $’s.
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  and    so  t t
I I

$ $
% # % #& ! !

If the same $ is applied for the same t ($L = $WA) then;

1
5   i.e,  

5
L

WA L
WA

#
# #

#
& &

Thus,

2 1 2

1 5 5
or

5

2

L L L L L

WA WA WA WA WA

WA L

v r r

v r r

v v

# #
# #

& & (

& ( &

&

" Wheel-axle will give 2½ times the end-point velocity

of the lever (theoretically).

Note: the assumption of $L = $WA is questionable. The

$-producing capabilities of the muscle groups used should

be considered.

Summary:

Levers – greater potential for high v because of larger r.

Wheel-axle – greater potential for high v because of

small I.

The body uses both depending upon circumstances.
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4.4 Push-like Patterns.

! In the previous section we looked at throw-like motion.

The aim was to produce high end-point velocity –

sequential segmental rotations.

! These movements include throwing, kicking and

striking skills.

! For other skills the performance objectives may be:

1. Accuracy of projection, e.g. basketball throw.

2. Application of a large motive force to

overcome the resistive force acting on an

object, e.g. weight lifting, body projecting

itself.

Throw-like pattern ' high v ' point of contact of object

on distal link moves in rotary or curvilinear path.

Push-like pattern ' accuracy or overcoming resistive

force ' point of contact with object moves in rectilinear

path.
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In push-like patterns the segmental rotations take place

simultaneously, rather that sequentially.

– This allows control so that the path is a straight line.

Curve path " object must be released (or struck) within a

narrow space to hit a target – little time is available within

the total performance to contact or release the object and

be successful.

Straight path " object can be released or struck within a

wide range and still hit target – performer has more time

to align the release or contact to be successful.



19

The above figure shows the difference in accuracy of

projection between a curvilinear path and a rectilinear

path.

Example:

Students in a beginning tennis class tend to ‘push’ the ball

rather that strike it in order to achieve an accurate serve.

4.4.1 Differences between Throw-like and Push-like

 patterns.

1. Throw-like – segment-object contact point ‘lags back’

as the proximal segments ‘move out from under’ the

distal segment and eventually the distal end will catch

up to (and maybe pass) the proximal segments at

release.

Push-like – segments are positioned either behind the

object to be projected (darts) or the object or implement

is pulled along (oar in rowing, ball and stick in field

hockey push-in)
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2. Throw-like – segmental rotations occur sequentially to

produce high velocity.

Push-like – segmental rotations occur simultaneously to

produce high accuracy and/or force.

3. Throw-like – object moves along a curvilinear path

before contact or release.

Push-like –object moves along a rectilinear path before

contact or release.

4. Throw-like – predominance of wheel-axle movements.

Push-like – predominance of lever-like movements.
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Example:

Compare the volleyball spike and volleyball set pattern.

Spike:

! Aim – high velocity.

! Motion of hand is curvilinear

! Initial lag of hand

! There is sequential rotations

– Typical throw-like
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Set:

! Aim – accurate placement

! Motion of hand is rectilinear

! Hands start in front

! There is simultaneous rotations

– Typical push-like

A push-like pattern also is used in situations in which the

centre of gravity of an object being moved must be kept in

a precise location for balance.

Example:

In lifting free weights in weight training, the centre of

gravity of the barbell must be kept in vertical alignment

with the base segments. If the barbell moves horizontally

from its vertical rectilinear path, other muscle groups must

be used to bring it back into alignment, or it will rotate

over and fall to the floor.

Weight-lifting machine eliminates the need for the

performer to maintain the vertical rectilinear direction of

the resistance ' easier and safer lifting!
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Whether a skill ideally should be a throw-like or a

push-like motion depends primarily on the overall

performance objective of the skill.

– High velocity

or

– Accuracy/manipulating large resistance.

The choice of pattern also depends on the constraints of

the activity and the performer.

The ideal pattern may have to be compromised due to the

physical environment, competitive situation or physical

attributes of the performer.

4.5 The Throw-Push Continuum.

! Open kinetic link principle applied to the throw-like

pattern governs events demanding high velocity

! Open kinetic link principle applied to the push-like

pattern governs events demanding accuracy, guiding

objects in an accurate path or moving relatively large

resistances.

! In general, open kinetic chain movements cannot be

classified as being entirely throw-like or entirely push-

like.
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! Constraints in activities usually require ‘blending’ of

throw-like and push-like patterns into combinations of

the two.

! For this purpose, skills can be placed along a throw-

push continuum.

– Skills performed with entirely sequential rotations

are placed at one end.

– Skills performed with entirely simultaneous

rotations are placed at the other end.

– In between are skills that display both sequential

and simultaneous rotations.

Throw-like patterns are characterized by the sequencing of

segmental rotations from most massive to least massive

and from most stable to most free.

The constraints that influence the location of a skill on the

continuum are as follows:

1. The massiveness of the object to be moved or

projected.

2. The size of the object to be moved or projected.

3. The shape of the object.

4. The strength of the performer.

5. The skill of the performer.
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Example:

If high speed of the object is important for achieving

distance of projection – then the most sequential pattern

possible should be used.

For a skilled player to throw a cricket ball from the

outfield – using sequential rotations entirely is both

possible and desirable.

In the shot put, high speed is still the most important

parameter for achieving distance of projection –

performance objective is as above.

However, the shot would not be thrown because of distal

musculoskeletal limitations in manipulating a massive

object at its end-point.

One should attempt to produce sequential rotations of the

massive segments (pelvis, trunk and shoulder girdle)

followed by simultaneous rotations of the less massive

distal segments of the upper extremity.
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" shot put ~ in the middle of continuum.

~ ½ sequential and ½ simultaneous.

It is an activity in which constraints of the performer

demand the use of less that the ideal pattern.

In the case of the weak performer attempting to put the

shot further adaptation is necessary – all simultaneous

motions may be used, without any evidence of sequencing.

" an activity that should ideally be ‘pure’ throw-like ends

up ‘pure’ push-like.

Size and Shape (second and third constraints):

A javelin and football are also thrown for distance but

because of the somewhat unwieldy shapes there is a small

component of a push at the distal end.

Javelin is thrown in the manner because of tip placement.

Football is thrown in this manner because of possible

wobble.

One identifying characteristic of a throwing pattern that

has been adapted to a partial pushing pattern is that the

object to be projected is brought in closer to the

longitudinal body axis.

This is done because I produced by the distal segment and

object is too great for smaller muscle torques to stabilize

or accelerate.
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As the mass is brought closer to the body, the sequential

segmental rotations become more simultaneous segmental

rotations and combine to move the distal end of the kinetic

chain in a rectilinear rather than a curvilinear path before

release.
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4.6 Performance Analysis of Push-like Movements,

There are three mechanical purposes related to push-like

patterns:

1. To manipulate a resistance – force activities

2. To generate maximum power – power activities

3. To maximize accuracy – accuracy activities.

4.6.1 Force Activities.

In force activities the performer aims to move a resistance

from A to B. How fast this is done is not significant to the

outcome.

‘Power lifting’ is a good example of this. In reality the

power lifting events of bench press, squat and dead lift are

force activities not power activities.

Maximum strength is paramount not the speed of the lifts.

Brown and Aboni (1985) found that skilled lifters took a

longer time to perform the dead lift than the unskilled.

' Force-velocity relationship of muscle.

To achieve maximum force against the resistance and

straight-line motion, simultaneous segmental rotations are

necessary.

Squat:

Slight extension of inter-vertebral joints and extension of

hips and knees and plantar flexion of ankles.
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All movements should occur simultaneously to

maximize muscle torque against resistive torque and to

keep bar moving vertically up.

Accelerations should be kept to a minimum – injury

prevention and force-velocity relationship.

Skilled lifters show less variation in speed of both descent

and ascent than unskilled lifters.

4.5.2 Power Activities.

Power activities, like force activities require a high

amount of force.

In addition however, power activities require a high

velocity.

Force-velocity relationship " when v increases, F

decreases and vice versa.

" percentage of maximum muscle tension required to lift

a given load increases with speed of lift.

In power activities the velocity of the object being moved

must be established in a relatively short time " high

acceleration.

Limited time available for force development.
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In power activities researchers often identify the

magnitude and location of the peak force in the time

history of the performance.

– Peak power always occurs after peak force.

– Peak velocity always occurs after peak power.

Power events may be placed on a continuum.

Force application Velocity of moving

more important. object more important.

Power activities may be placed into four categories:

1. Jumping events

2. Punching events

3. Lifting events

4. Continuous events that require the repeated

application of a force.

Jumping events:

! Vertical jump has long been used as a measure of

power. The performer must apply force to the body’s

mass to accelerate it as much as possible while it is still

in contact with the ground.

! Vy determines height of jump.
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! Jumping events include jumps that are discrete skills

in themselves and jumps that are part of a larger skill,

e.g. volleyball spike, basketball jump shot, takeoffs in

gymnastics and diving.

! Whenever the body is projecting itself, the segmental

rotations act to move the body’s centre of gravity in a

rectilinear path.

! In contrast to most other events, the jumping event

shows the most massive segment, the trunk, located at

the open end of the link system and the least massive,

the feet, located at the fixed end.

! Segmental movements are in reverse order.
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most free     most fixed (feet)

! To project the body one must have an external force –

this is the ground reaction force (FR) – created by the

jumper pushing against it.

! FN is applied to feet and should ideally pass through the

body’s centre of gravity. If FN passes in front or behind

the centre of gravity ' a rotation moment

' loss of muscle work and height.

! The motion consists of a sequential application of

musculotendinous power from the hip to the ankle.

! The initial upward motion of the sequence is arm

flexion.

upward arm acceleration ' arms exerting a downward

reaction force on the segments below ' preloading of

lower segments (storage of elastic recoil energy)

Deceleration of arms ' unloads lower segments "

optimum time to begin trunk extension.

! Ideal push motion has simultaneous rotation of

segments.

However in jumping the lower and less massive segments

are subject to a large downward reaction force during

upward acceleration of the trunk.
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" They may be unable to begin simultaneous

extension with the trunk, even though their muscles are

attempting to produce the force for upward acceleration.

Advantage?

Additional pre-stretching of lower extensor muscles

' evoke stretch reflex and increase elastic strain

energy.

Punching motions:

! Boxing, karate, tae kwon do, etc.

! Both force and speed of punch are important.

Boxing:

A right hand punch is performed most effectively by using

hips, trunk and shoulder girdle segments as a wheel-axle

mechanism about the supporting opposite hip joint. The

right upper extremity is used as a lever system – shoulder

flexion and elbow extension.

Straight-line movement of fist is important

' shortest distance between two points " faster punch.

Jab – hook?
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Acceleration of hand (fist) is very important. The

success of the impact is determined to a large extent by the

sudden deceleration of the hand on the opponents face.

) A larger acceleration ' a greater impact velocity ' a

greater deceleration ' a larger impact force.

The effectiveness of the punch relies on both impact

power and accuracy – rectilinear best for accuracy.

The peak forces produced on impact do most of the

damage.

An opponent can reduce these peak forces by ‘rolling’

with the punch.

Tae kwon do:

Turning hook kick is an example of a punching

movement, while rotating on one leg. The lower extremity

of the other leg undergoes extension (push) at the end of

the rotation to contact the target

– Horizontal abduction of thigh is followed by hip, knee

and ankle extension, so the foot arrives at the target as

quickly as possible.

– Like boxing contact speed is important – same

reasons.
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Lifting events:

Olympic lifts – snatch and clean and jerk – have a high

component of power.

Both lifts require the bar to be moved upward as fast as

possible in order for the performer to have sufficient time

to ‘drop’ under the bar.

In the clean and jerk this is done twice – once in the clean

and again in the jerk.

In the snatch it is done once.

The faster the bar moves up, the more time the performer

has to drop under and less hip and knee flexion is required

to do this.

– ‘Recovery’ after dropping under is a force activity.

Continuous power events:

Whenever there is limited time to accelerate an object,

power is involved.

Continuous power events include activities that require the

repeated application of a force under time constraints.

Two examples are rowing and sprinting.
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Rowing:

Rowing motion involves two blocks of segmental

movements:

1. Extension of trunk, hips, knees and ankles.

2. Retraction of shoulder girdle, extension-horizontal

abduction of shoulder and elbow flexion.

Movement of segments in the blocks tends to be

simultaneous, while the block themselves are sequenced.

After start up period, very little is any slippage occurs

between oar and water.

– An oarsperson must apply a large force in a limited

time to keep the shell moving at high velocity or

accelerating.

– The oar moves at the same speed as the shell (after the

start)

" The oarsperson must produce enough force by

contracting the muscles fast enough to surpass

hydrodynamic drag forces and apply additional force if

possible.

– Start-up is force dominated power event, rest is speed-

dominated power event.
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Sprint:

Same principle as rowing

After a force dominated power start, the runner must

generate sufficient force, during the brief time the foot is

in contact with the ground, by rapid contract of muscle to

support the body weight and keep the body moving at a

high speed against aerodynamic drag forces.

Power surge comes during the short time the foot is in

contact with the ground (' FRx & FRy)

Speed of running is strongly correlated with stride length

and stride frequency.

A greater power in push-off ' greater stride length and

the faster the runner can get the foot back down to the

ground (i.e. the greater the stride frequency) the more

frequently the power can be applied.

Push-like simultaneous extensions of the hip, knee and

ankle joints provide the power in this skill.


