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1 Introduction

In figure 1 a regulator control system is shown, in which it is desired to maintain
the output c(t) at a value of zero in the presence of a disturbance f(t). In this
problem the disturbance is a unit step.

Figure 1: Regulator control system

1. With D(z) = 1 (ie no compensation) and an open loop gain K=1, find the
staedy state value of c(t). Use a simulink simulation to verify your results.

2. Devise a controller D(z) that will ensure that the system output c(t)will
return to zero following the disturbance. The response should be second
order with an overshoot of approximately 30%. Justify your choice of
controller and verify its performance in simulink.

3. Determine the range of open loop gain K for which the system of part b
will be stable.

4. Draw the root locus plot for the system of part b and using the plot, show
how the system closed loop poles and hence its response will vary as the
sampling period T is increased. Verify your answer using simulink.
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2 Solution

2.1 Transfer function of the System

Figure 2: System

For the system shown in figure 2 the identifiers are defined as following:

P Transfer function of the plant K
s+1

Z Transfer function of the zero order hole 1−e−sT

s

D Transfer function of the controller

From the system diagram the following equations can be written off:

C(s) = P (s) (U(s) + E1(s)) (1)

E1(s) = Z(s)D(s)E∗(s) (2)

E∗(s) = −C(s) (3)

Putting equation 2 and 1 into equation 3 we get the following equation.

E∗(s) = −P (s)U(s)− P (s)Z(s)D(s)E∗(s) (4)

Equation 4 can now be star-transformed.

E∗(s) = −P (s)U(s)
∗

− P (s)Z(s)D(s)
∗

E∗(s)

E∗(s) + P (s)Z(s)D(s)
∗

E∗(s) = −P (s)U(s)
∗

E∗(s)
(

1 + P (s)Z(s)D(s)
∗
)

= −P (s)U(s)
∗

E∗(s) = −
P (s)U(s)

∗

1 + P (s)Z(s)D(s)
∗

(5)

If we take equation 2 an put it into equation 1 we get an expression for C(s)

C(s) = P (s)U(s) + P (s)Z(s)D(s)E∗(s) (6)

Equation 6 will also be star transformed.

C∗(s) = P (s)U(s)
∗

+ P (s)Z(s)D(s)E∗(s) (7)

Now equation 5 is put into 7
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C∗(s) = P (s)U(s)
∗

− P (s)Z(s)D(s)
P (s)U(s)

∗

1 + P (s)Z(s)D(s)
∗

C∗(s) =
P (s)U(s)

∗
(

1 + P (s)Z(s)D(s)
∗
)

1 + P (s)Z(s)D(s)
∗

−
P (s)Z(s)D(s)

∗

P (s)U(s)
∗

1 + P (s)Z(s)D(s)
∗

C∗(s) =
P (s)U(s)

∗

+ P (s)U(s)
∗

P (s)Z(s)D(s)
∗

− P (s)Z(s)D(s)
∗

P (s)U(s)
∗

1 + P (s)Z(s)D(s)
∗

C∗(s) =
P (s)U(s)

∗

1 + P (s)Z(s)D(s)
∗

(8)

(9)

With equation 8 it is possible to formulate the Z-transform of C as

C(z) =
P ∗ U(z)

1 + P ∗ Z ∗D(z)
(10)
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2.2 Steady state value of c(t)

2.2.1 Calculation

The Steady state value of the system should be calculated for K = D = 1 and
a step input. Therefore the Parts of the system are defined as:

U(s) =
1

s
(11)

P (s) =
1

s + 1
(12)

D(s) = 1 (13)

Z(s) =
1− e−sT

s
(14)

With statements 11 to 14 on the current page we get the following expres-
sions.

P (s)U(s) =
1

s(s + 1)
(15)

P (s)Z(s)D(s) =
1− e−sT

s(s + 1)
(16)

Equation 15 can also be written as

P (s)U(s) =
1

s(s + 1)
=

1

s
−

1

s + 1
(17)

The z-transformation of equation 17 can now be done with the tables.

P ∗ U(z) =
z

z − 1
−

z

z − e−T

P ∗ U(z) = z
z − e−T − z + 1

(z − 1)(z − e−T )

P ∗ U(z) =
z(1− e−T )

(z − 1)(z − e−T )
(18)

Equation 16 can also be written as:

P (s)Z(s)D(s) =
1

s(s + 1)

(

1− e−sT
)

(19)

The Z-transformation of 1
s(s+1) is allready known from equation 18. So only

the Z-transformation of 1− e−sT must be found. In the s-domain e−sT is just
a delay of T. In the z-domain a delay of T (sampling time) is expressed as z−1.
Therefore the the z-transformation of 1− e−sT is 1− z−1.

1− z−1 =
z − 1

z
(20)

With equation 18 and 20 the z-transfomation of equation 16 is derived as:

5



P ∗ Z ∗D(z) =
z(1− e−T )

(z − 1)(z − e−T )

z − 1

z

P ∗ Z ∗D(z) =
1− e−T

z − e−T
(21)

With equation 21 and 18 it is possible to formulate the z-transformed output
function of the system.

C(z) =
1

1 + 1−e−T

z−e−T

z(1− e−T )

(z − 1)(z − e−T )

C(z) =
(z − e−T )

(z − e−T ) + (1− e−T )

z(1− e−T )

(z − 1)(z − e−T )

C(z) =
z(1− e−T )

z − e−T + 1− e−T

1

(z − 1)

C(z) =
z(1− e−T )

z − 2e−T + 1

1

(z − 1)
(22)

To derive the steady state value of c(t) the final value theorem can be used.

c(∞) = lim
t→∞

c(t) = lim
z→1

(z − 1)C(z)

= lim
z→1

(z − 1)
z(1− e−T )

z − 2e−T + 1

1

(z − 1)

= lim
z→1

z(1− e−T )

z − 2e−T + 1

=
1− e−T

2− 2e−T

=
1

2

1− e−T

1− e−T

=
1

2
(23)

As it can be seen in equation 23 the steady state value was derived to 0.5.
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2.2.2 Verification with simulink

To check the calculated result the model was build in simulink (figure 3).

Figure 3: Simulink model

As it can be seen in figure 4 the calculated and experimental achieved results
are equal.

Figure 4: Step response
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2.3 Controller design

To satisfy the demanted results, a steady state value of zero to an step input
of one, D must contain an integrator. To achieve the overshoot of 30 % an
additional P controller is added. Therefore we use an PI controller. So D(z)
will be:

D(z) =
zC

z − 1
(24)

The output function then becomes to:

C(z) =
(z − e−T )(z − 1)

(z − e−T )(z − 1) + CKz(1− e−T )

zK(1− e−T )

(z − 1)(z − e−T )

=
zK(1− e−T )

(z − e−T )(z − 1) + KCz(1− e−T )

=
zK(1− e−T )

(z2 − ze−T − z + e−T ) + z(CK − CKe−T )

=
zK(1− e−T )

z2 + z(−1 + CK − e−T (CK + 1)) + e−T

(25)

The value of C which satisfies the specifications was determined with the
simulink model shown in figure 5.

Figure 5: Simulink model with controller

This controller has an overshoot of approximately 30% if C=0.65. This can
be seen in figure 6.
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Figure 6: Step response with controller

2.4 Stability range of K

C(z) =
zK(1− e−T )

z2 + z(−1 + CK − e−T (CK + 1)) + e−T
(26)

The system function (eq. 26) has pole at the following positions

0 = z2 + z(−1 + CK − e−T (CK + 1)) + e−T

z1/2 = −
1

2
(−1 + CK − e−T (CK + 1))±

√

(−1 + CK − e−T (CK + 1))2 − e−2T

As shown in the root locus plot in figure 7 on the following page is the system
stable if the poles real part is greater than minus one and less than one. Because
the system is stable if the poles are in the unit circle.

−1 ≤ −
1

2
(−1 + CK − e−T (CK + 1)) ≤ 1

First we derive which value of K can be the maximum.

−1 = −
1

2
(−1 + CKmax − e−T (CKmax + 1))

2 = −1 + CKmax − e−T CKmax − e−T

3 + e−T = CKmax − e−T CKmax

3 + e−T = CKmax(1− e−T )

Kmax =
3 + e−T

C(1− e−T )
= 63.128 (27)

Now the lower value of K is calculated.
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Figure 7: Root locus plot

1 = −
1

2
(−1 + CKmin − e−T (CKmin + 1))

−2 = −1 + CKmin − e−T CKmin − e−T

−1 + e−T = CKmin − e−T CKmin

−1 + e−T = CKmin(1− e−T )

Kmin =
−1 + e−T

C(1− e−T )
= −1.53 (28)

Because K is the loop gain it must have a value greater than zero. Therefore
is the stability range of K derived as;

0 < K ≤ 63.1

10



2.5 Variation of the sampling period

2.5.1 Root locus

If the sampling time increases the root locus plot becomes smaller. This is
shown in figure 8 and 9. This means the absolute value of the poles decreases.
Therefore the overshoot and settling time increases. But also the system is
stable in a smaller area of K.

Figure 8: Root locus plot - T = 0.1s

Figure 9: Root locus plot - T = 1.0s
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2.5.2 Simulink

The increase of settling time and overshoot can easily be observed in the step
responses shown in figure 10 to 12 on the current page.

Figure 10: Step response - T = 0.1s

Figure 11: Step response - T = 1.0s

Figure 12: Step response - T = 5.0s

12


